A Global Macroeconomic Risk Model for Value, Momentum, and Other Asset Classes

Ilan Cooper, Andreea Mitrache, and Richard Priestley*

This version: May 2020

Abstract

Value and momentum returns and combinations of them are explained by their loadings on global macroeconomic risk factors across both countries and asset classes. These loadings describe why value and momentum have positive return premia while at the same time being negatively correlated. The global macroeconomic risk factors also perform well in capturing the returns on other characteristic-based portfolios. The findings identify a global macroeconomic source of the common variation in returns across asset classes and countries.

JEL Classification: G1, G11, G12

Keywords: Value, momentum, global macroeconomic risk.

*Cooper is with the Department of Finance, BI Norwegian Business School, Mitrache is with J.P. Morgan. Priestley is with the Department of Finance, BI Norwegian Business School. We thank Anmar Al Wakil (MSF discussant), Jesper Rangvid, Richard Roll, Nick Roussanov (Jacobs Levy conference discussant), Zhongzhi Song (FIRS discussant), David Stolin, Michela Verardo, Yaqiong Chelsea Yao (CICF discussant), participants at the 2016 CICF, the 2017 FIRS, the 2017 MSF, the 2017 Jacobs Levy Center’s Conference, and the NES 25th Conference for helpful comments and suggestions.
1 Introduction

This paper asks if there is a common factor structure related to global macroeconomic risk that can explain anomalies that are present across many asset classes and countries. Consider value and momentum which are two of the most debated anomalies in financial markets.\(^1\) Asness, Moskowitz, and Pedersen (2013) find consistent return premia on value and momentum strategies across asset classes such as equities, fixed income, currencies and commodities, as well as across countries. They uncover three puzzling findings. First, even though these return premia are positive, they are negatively correlated. Second, in spite of this negative correlation, a simple equal weighted combination of value and momentum produces a positive return premium. Third, various risk factors such as the market portfolio and liquidity cannot explain these return premia. Instead, global value and momentum factors are required to describe value and momentum characteristic sorted portfolios. Alas, it is not clear how these particular characteristic based factors relate to macroeconomic state variables.

The findings in Asness, Moskowitz, and Pedersen’s (2013) raise an important challenge for asset pricing: is there an asset pricing model that can explain the positive return premia of value and momentum while at the same time explaining the negative correlation of the value and momentum return premia and the fact that an equal weighted combination strategy earns a positive average return? Asset pricing models based on the q-theory of investment and growth options of firms have been useful in explaining value and momentum for equities.\(^2\) However, no such models exist to explain value and momentum in the non-equity asset classes studied in Asness, Moskowitz, and Pedersen

\(^2\)See, for example, Berk, Green, and Naik (1999), Johnson (2002), Gomes, Kogan, and Zhang (2003), Carlson, Fisher and Giammarino (2004), Zhang (2005), Cooper (2006), Sagi and Seasholes (2007), Li, Livdan, and Zhang (2009), Liu, Whited, and Zhang (2009), Belo (2010), Li and Zhang (2010), and Li (2018).
Furthermore, other asset classes and characteristic-sorted portfolios also require their own characteristic-based factors to explain their returns such as betting against beta, quality, profitability, investment and size.\(^3\) We ask if there is a unified factor model that can explain these characteristics across both asset classes and countries.

Our contribution is to show that a version of Ross’s (1976) Arbitrage Pricing Theory (APT) that uses a global representation of the Chen, Roll, and Ross’s (1986) macroeconomic risk factors (henceforth CRR factors) can describe the cross-section of value and momentum stock returns. In addition, the CRR factors can describe the return premia on both value and momentum high minus low strategies as well as their negative correlation across both countries and asset classes. Furthermore, in spite of the fact that value and momentum return premia are negatively correlated, the CRR factors can also explain the positive return premia on combinations of value and momentum that are found in the data. Importantly, we find that the exposure to global macroeconomic risk factors summarizes the average returns of both equity portfolios sorted on value and momentum and non-equity portfolios sorted on value and momentum, namely currencies, fixed income, and commodities. Investment-based asset pricing models offer explanations for why value and momentum are exposed to systematic risk. However, these models do not specify what this risk is. Our paper identifies the nature of this systematic risk, namely global macroeconomic risk and we show that, in addition to equities, non-equity asset classes are also exposed to this risk. This finding alleviates some of the concerns that a risk-based explanation for value and momentum exists only for equities.

The findings are not confined to value and momentum. We find that the CRR factors can explain a reasonable fraction of the cross section of returns on other international portfolios that are sorted on characteristics that have been recently proposed in the literature, such as profitability, investment, betting against beta, quality, and size. Our findings are consistent with recent papers that employ the CRR factors to explain U.S. asset pricing anomalies in equity markets. For example, Liu and Zhang (2008) find that the growth rate of industrial production is a priced risk factor and exposure to it explains

\(^3\)Investment and profitability characteristics are closely linked to investment-based asset pricing models from which these types of risk factors arise for equities, see Hou, Xue, and Zhang (2015).
more than half of momentum profits in the U.S. Cooper and Priestley (2011) show that the average return spread between low and high asset growth portfolios in the U.S. is largely accounted for by their spread in loadings with respect to the CRR factors.

Using the global CRR factors to measure risk across countries and asset classes, we present a number of new results. First, the global CRR factors do a good job in describing the excess returns on the forty-eight value and momentum portfolios studied by Asness, Moskowitz, and Pedersen (2013).\footnote{The forty-eight portfolios consist of three portfolios sorted by value and three portfolios sorted by momentum in each of the following markets and asset classes: U.S. stocks, U.K. stocks, Europe stocks, Japan stocks, country equity index futures, currencies, fixed income, and commodities. These portfolios are used as test assets to estimate the prices of risk of the CRR factors.} This is the case across countries and across asset classes, suggesting a common global factor structure and hinting at the possibility of extensive market integration.\footnote{Markets are completely integrated if assets with the same risk have identical expected returns irrespective of the market (Bekaert and Harvey, 1995). Integration can be across markets and across countries.} When regressing average excess returns on the estimated CRR factor loadings the cross-sectional R^2 is 51%. The pricing errors are small averaging 0.14% per month and the median ratio of actual average excess returns to expected excess returns is 1.06. Considering that these are non-return based macroeconomic factors, these metrics are impressive.

The second result shows that the twenty-two high minus low value and momentum return premia constructed from long and short positions, which have positive average returns but are negatively correlated, have in general opposite sign exposures with respect to each of the macroeconomic factors.\footnote{The twenty-two return premia are value and momentum premiums in each of the eight asset classes and markets studied in Asness, Moskowitz, and Pedersen (2013) and value and momentum factor premia when aggregating across all assets, across equities, and across non-equity assets.} We take the fitted values of the value and momentum return premia from the CRR factor model and compare their correlations with the correlations of the actual return premia. It turns out that the CRR model captures the negative correlation between the value and momentum return premia, underscoring the ability of the CRR factors to describe actual value and momentum returns.

The third result focuses on the return premia of fifty-fifty combinations of value and momentum return premia. We show that these eleven combination portfolios have a positive return premia because they have non-zero loadings on the CRR factors and con-
sequently these factors can account for their positive average returns. This is a particularly interesting finding since Asness, Moskowitz, and Pedersen (2013) note that because of the opposite sign exposure of value and momentum to liquidity risk, the combination portfolios are neutral to liquidity risk. That is, liquidity risk cannot explain why a combination of value and momentum earns a positive return premia. However, we show that the combination portfolios are not neutral to global macroeconomic risk even if the value and momentum return premia have opposite sign exposures with respect to the global macroeconomic factors. The reason for this is that the exposures have different magnitudes.

Unlike characteristic-based factor models, the global CRR factors tie the factor structure of value and momentum directly to global macroeconomic risk. The fourth set of results we present compare the performance of the global CRR model to that of two other empirical asset pricing models. The first is the three factor model of Asness, Moskowitz, and Pedersen (2013) which includes a global market factor and global value and momentum factors. The second model is the global five factor model of Fama and French (2017) which includes a market factor and size, value, profitability, and investment factors. We find that the global CRR model performs better than these two other factor models when the test assets are based on value and momentum.

Given the success of the global CRR factors in describing the value and momentum portfolios, the fifth set of results we present assesses whether the returns on other assets can be explained by the global macroeconomic factors. If the CRR factors are a common source of global risk that drives the different factor structures across assets and across markets, and asset markets are to some extent integrated, then the CRR factors should be able to summarize the returns on other characteristic-sorted portfolios. We show that the global CRR factors can provide a reasonable description of the cross sections of broad sets of assets. Along with the forty eight value and momentum portfolios, we include portfolios sorted on size, book-to-market, investment, operating profitability, betting against beta portfolios, and quality portfolios. The CRR model performs roughly the same as the Fama and French (2017) five factor model in describing the cross section of this extended
set of test assets that include portfolios on which the Fama and French (2017) factors are built.

The results we present offer a clear indication that global macroeconomic risks have a role in describing the returns on value and momentum strategies and combinations of these strategies across countries and asset classes. Furthermore, the differences in the loadings on the CRR factors provide a means of describing the negative correlation between value and momentum return premia. Coupled with the ability of the global CRR factors to describe additional test assets returns, this points to a common factor structure across asset classes and countries based on global macroeconomic risk. This is an important step in understanding return premia in global asset markets since, as Cochrane (2011) notes in his Presidential Address, this empirical project is in its infancy and we still lack a deep understanding of the real macroeconomic risks that drive the cross section of expected returns across assets and asset classes. This paper provides the first evidence for a macroeconomic explanation for a common factor structure and shows that a global specification of the CRR (1986) macroeconomic model does a good job in capturing the expected returns across multiple asset classes and markets.

The remainder of the paper is as follows: in section 2, we discuss some recent literature on return premia across countries and asset classes. Section 3 describes the data. Section 4 presents cross sectional tests and compares the correlations between value and momentum return premia implied by the global CRR model and those in the data. We compare the performance of the CRR model to other factor models and we introduce other characteristic sorted portfolios to examine if the CRR factors can price them. Section 5 concludes.

2 Evidence on Return Premia Across Countries and Asset Classes

Our work is related to extant studies that have identified common patterns in returns across different countries and asset classes. For example, Asness, Moskowitz, and Ped-
ersen (2013) find that a three-factor model consisting of a global market factor, a global value factor, and a global momentum factor performs well in describing the cross section of average returns on value and momentum strategies across asset classes and countries. Hou, Karolyi, and Kho (2011) show that a multifactor model of both global and local factors based on momentum and cash flow-to-price performs well in explaining the cross-sectional and time series variation of global stock returns. Karolyi and Wu (2014) identify sets of globally accessible and locally accessible stocks and build global and local size, value, and momentum factors. They show that their model captures strong common variation in global stock returns and has relatively low pricing errors, but only when local factors are included. Fama and French (2012) use a four-factor model based on firm characteristics at a regional level to explain international stock returns. However, a global version of their four-factor model cannot explain the return premia on their international stock market returns. Fama and French (2017) show that an international version of the Fama and French (2015) five factor model summarizes well the cross section of portfolios sorted on size, book-to-market, operating profitability, and investment for developed markets.

Frazzini and Pedersen (2014) show that betting against beta factors that go long low-beta securities and short high-beta securities earn positive average excess return across markets (U.S. and international equities) and across asset classes such as U.S. Treasuries, corporate bonds, futures and forwards on country equity indices, country bond indices, foreign exchange, and commodities.

Koijen, Moskowitz, Pedersen, and Vrugt (2015) study the carry effect attributed to currencies and find evidence of its existence in the cross section and time series of global equities, global bonds, commodities, U.S. Treasuries, U.S. credit portfolios, and U.S. equity index call and put options. These global carry returns are related to global return factors such as value, momentum, and time series momentum (Asness, Moskowitz, and Pedersen (2013), and Moskowitz, Ooi, and Pedersen (2012)), but also include additional information about the cross section of returns.

Menkhoff, Sarno, Schmeling, and Schrimpf (2012) link the carry trade effect to global
foreign exchange volatility risk. The proposed volatility factor is also able to price the cross section of five foreign exchange momentum returns, ten U.S. stock momentum portfolios, five U.S. corporate bond portfolios, and the individual currencies used in their sample.

Lettau, Maggiori, and Weber (2014) specify a downside risk capital asset pricing model (DR-CAPM) which can jointly explain the cross section of currencies, equity, equity index options, commodities, and sovereign bond returns because the spread in average returns is accompanied by a spread in betas conditional on the market being in a downturn. However, Lettau, Maggiori, and Weber (2014) stress that the DR-CAPM cannot explain the returns corresponding to momentum portfolios, corporate bonds, and U.S. Treasuries. Asness, Frazzini, and Pedersen (2019) find that a factor that goes long high-quality stocks and short low-quality stocks earns significant risk-adjusted returns across many countries.

What is striking about the extant literature is the number of separate factors that are required to explain the different cross sections. It is clear that to date research has not uncovered a unifying factor model for all asset classes and all countries. While some factors can explain some returns that are formed by some characteristic across some asset classes and countries, the factor structures required to explain these returns in the above studies differ considerably. Furthermore, factor models that use characteristic-based factors do not have a straightforward economic interpretation for the sources of common risk these characteristic-based factors are related to. However, if the characteristic-based factors are diversified portfolios that provide different combinations of exposures to underlying sources of macroeconomic risk, there should be some set of macroeconomic factors that performs well in describing the patterns in average returns.

In this paper, we seek to provide a common factor structure across several asset classes and markets that is related to underlying global macroeconomic sources of risk. An appealing feature of the factor model we present is that it measures risk directly as exposure to macroeconomic conditions which affect cash flows and discount rates (see the discussion in Chen, Roll, and Ross (1976)). There is an established economic interpretation for

7 An exception to this are the investment and profitability based factors in Hou, Xue, and Zhang (2015) which are inspired by the q-theory of investment.
the risks underlying the CRR factors, namely their variation over the business cycle. For example, the forecasting ability of the term spread for aggregate output is demonstrated in, among others, Harvey (1988), Chen (1991), Estrella and Hardouvelis (1991), Estrella and Mishkin (1998), Estrella (2005), Stock and Watson (2003), and Ang, Piazzesi, and Wei (2006). Movements in the default spread are known to contain important signals regarding the evolution of the real economy and risks to the economic outlook as shown in, among others, Friedman and Kuttner (1992, 1998), Emery (1996), Gertler and Lown (1999), Mueller (2009), Gilchrist, Yankov, and Zakrajšek (2009), and Faust, Gilchrist, Wright, and Zakrajsek (2011). A further macroeconomic variable we use is industrial production growth which is clearly related to the business cycle. For example, the NBER Business Cycle Dating Committee refers to industrial production as an economic indicator for the state of the economy.\footnote{See http://www.nber.org/cycles/jan2003.html}

The CRR factors provide an easy to interpret description of risk across global markets based on macroeconomic conditions. This paper takes a first step towards examining whether many characteristic sorted portfolios share a common source of macroeconomic risk.

3 Data

Our main analysis examines the returns on three portfolios sorted by value and three portfolios sorted by momentum in each of the following eight markets and asset classes: U.S. stocks, U.K. stocks, continental Europe stocks, Japanese stocks, country equity index futures (country indices), currencies, government bonds (fixed income), and commodity futures (commodities) for a total of forty eight portfolios. The data are an extended version of the data used in Asness, Moskowitz, and Pedersen (2013) and are available from AQR Capital Management’s website.\footnote{www.aqr.com} The sample period is from April 1983 to December 2018. We also collect twenty two value and momentum factors from AQR that are updated versions of those used in Asness, Moskowitz, and Pedersen (2013). These factors are zero cost long minus short positions where every asset is weighted such that
the sum of weights is zero.10

\subsection{Summary Statistics}

We present summary statistics of the returns on the forty eight value and momentum portfolios, returns on the twenty two value and momentum risk premia (high minus low portfolios), and the returns on the eleven combination factor premia that are presented in Asness, Moskowitz, and Pedersen (2013) but now updated to 2018. Securities are sorted by value (V) and momentum (M) into three groups, with V1 and M1 indicating the lowest group; V2 and M2 the medium group; and V3 and M3 the highest group. The value and momentum return premia are zero cost long minus short positions where every asset is weighted such that the sum of weights is zero. The combination portfolios are a fifty-fifty combination of the value and momentum return premia.

Panel A of Table 1 shows the average excess returns (in excess of the 1-month U.S. T-bill rate) on the forty eight value and momentum portfolios and the sixteen value and momentum return premia corresponding to the eight markets and assets classes. We also include value and momentum portfolios that are aggregated over all assets (global all), over equities (global equity), and over non-equities (global other), and the eleven return premia formed from combining value and momentum. We include \(t \)-statistics testing the null hypothesis that the average returns are zero.

The value effect and the momentum effect show up in all of the asset classes and across all countries and are statistically significant in most cases. Panel A shows that over the different markets and asset classes, the securities in the high third (V3 and M3) have higher returns than those in the low third (V1 and M1). This finding is confirmed in the final three columns when examining the return premia defined as defined above. In all cases the return premia are positive and in many cases statistically significant.11 The statistically significant value premia range from 0.19\% to 0.69\% on a monthly basis. The value premia are higher in equity markets than in non-equity markets. For example,

10Results using the simple high minus low portfolio return are very similar. Asness, Moskowitz, and Pedersen (2013) provide a detailed description of the data and factor construction.

11The lack of statistical significance for some markets as opposed to what Asness, Moskowitz, and Pedersen (2013) report stems from the fact that we use a different sample period.
aggregating across equity markets (global equity) yields an average excess return of 0.31% compared to 0.19% when aggregating across all non-equity classes (global others).

The momentum return premia that are statistically significant range from 0.79% per month for U.K. stocks to 0.42% per month for U.S. stocks (which is marginally statistically significant). The aggregated premia across the equity classes is 0.50% per month and across the non-equity classes it is 0.23% per month. Therefore, just as in the case of the value return premia, the momentum return premia are higher in equity markets than non-equity markets. When looking at global equity and global others separately, momentum generates return premia of 0.50% and 0.23% per month, respectively, both of which are statistically significant. Aggregating across all asset classes (global all) the momentum return premium is 0.34% per month which is also statistically significant.

Across all countries and in every asset class the combination return premia are positive and statistically significant with the exception of fixed income that has a positive average return albeit statistically insignificant. The combined equity classes have, when aggregated, a higher return premia of 0.41% per month than the combined non-equity classes which is 0.21% per month. Over all classes the combination return premia range from 0.19% for currencies to 0.55% for U.K. stocks.

Panel B of Table 1 displays the correlation coefficients between the value and momentum strategies. As documented by Asness, Moskowitz, and Pedersen (2013), there is a strong negative correlation between the two strategies within each market and asset class. These negative correlations are also present when aggregating across all markets, across all equities, and across all non-equity asset classes. The negative correlations range from -0.68 for global equity to -0.23 for fixed income. The average correlation coefficient is -0.53.

These summary statistics raise important challenges for any asset pricing model. First, why do value and momentum have positive return premia over many asset classes and countries? Second, why are the momentum and value return premia negatively correlated? Third, in spite of this negative correlation, why does a fifty-fifty combination of value and momentum portfolios earn a positive return? Does this combination return
premia indicate mispricing or is it related to risk? The rest of the paper provides answers to these questions.

3.2 Global Risk Factors

Global macroeconomic factors are used to construct the CRR factors in order to provide sources of global macroeconomic risk. The factors are given by the GDP-weighted averages of the CRR factors of all countries in our sample. More specifically, our global sample consists of: continental Europe (Austria, Belgium, Denmark, France, Germany, Italy, Netherlands, Norway, Portugal, Spain, and Sweden), Japan, the United Kingdom, and the United States.\(^{12}\) To compute the GDP weights, we use data on GDP per capita denominated in U.S. dollars available from the OECD.

The factors are formed as follows. The growth rate of industrial production, \(MP_t\), is defined as \(MP_t = \log(IP_t) - \log(IP_{t-1})\), where \(IP_t\) is the global index of industrial production in month \(t\) and \(\log\) is the natural logarithm.\(^{13}\) Data on industrial production are from the OECD. We define unexpected inflation as \(UI_t = I_t - E[I_t]\) and the change in expected inflation as \(DEI_t = E[I_{t+1}] - E[I_t]\). We measure the inflation rate as \(I_t = \log(CPI_t) - \log(CPI_{t-1})\), where \(CPI_t\) is the seasonally adjusted consumer price index at time \(t\) collected from Datastream. Expected inflation is given as \(E[I_t] = r_{f,t} - E[RHO_t]\), where \(r_{f,t}\) is the short term rate and \(RHO_t\) is the realized real short term return.\(^{14}\)

Guided by the methodology in Fama and Gibbons (1984), to measure the ex ante real rate, \(E[RHO_t]\), the change in the global real rate on Treasury bills is modelled as a moving average process, \(RHO_t - RHO_{t-1} = u_t + \theta u_{t-1}\), and subsequently we back out the expected real return from \(E[RHO_t] = (r_{f,t} - I_t) - \hat{u}_t - \theta \hat{u}_{t-1}\).

\(^{12}\)In Switzerland industrial production, one of the factors we consider, is only available as a volume index. Therefore, we drop Switzerland from our sample of countries to maintain a uniform approach to the construction of all macroeconomic factors.

\(^{13}\)Following Chen, Roll, and Ross (1986), Liu and Zhang (2008), and Cooper and Priestley (2011) we lead the MP variable by one month to align the timing of macroeconomic and financial variables.

\(^{14}\)The global short term risk free rate is calculated as a GDP weighted average of individual country short term rates. For the United States, we use the one-month Treasury bill from CRSP. For the countries within Europe and Japan, we use short term rates from Datastream. Not all countries have short term rates starting in 1983. As each country’s short term rate becomes available, we introduce it into the GDP weighted average. The same procedure is used when calculating a global long term rate.
term premium, UTS, is the GDP-weighted long term government bond yield minus the GDP-weighted short term government bond yield. The long term interest rate data for the United States are from the Federal Reserve Bank of St. Louis. For the remaining countries long term interest rate data are from Datastream. Due to the lack of data on corporate bond yields, the default factor is proxied for by the U.S. default spread. We define the default spread, UPR, as the spread between Moody’s Baa and Aaa corporate bond yields. Data are from the Federal Reserve Bank of St. Louis.

4 Cross Sectional Asset Pricing Tests

The first step in trying to understand if the global macroeconomic factors can explain the various puzzles that the Assnes, Pedersen, and Moskowitz (2013) paper unearths involves the estimation of the prices of risk of the five CRR global macroeconomic risk factors and an examination of whether these factors can explain the cross section of returns. Therefore, we undertake cross sectional asset pricing tests. We specify a linear multifactor model for expected returns:

$$E(r_{i,t}) = \lambda_0 + \beta' \lambda,$$

(1)

where, $r_{i,t}$ is the excess return on asset i, λ_0 is a constant, β is a vector of regression coefficients that are obtained from a multiple regression of excess returns on the CRR factors, and λ is a vector of prices of risk. This model is consistently estimated using the Fama and MacBeth (1973) cross-sectional regression methodology which follows two steps. Step one involves a time series regression of excess returns on the five factors using the full sample period:

$$r_{i,t} = \alpha_i + \beta_{i,MP}MP_t + \beta_{i,UI}UI_t + \beta_{i,DEI}DEI_t + \beta_{i,UTS}UTS_t + \beta_{i,UPR}UPR_t + \epsilon_{it},$$

(2)

where $r_{i,t}$ is the excess return on asset i. MP_t, UI_t, DEI_t, UTS_t, and UPR_t are industrial production growth, unexpected inflation, the change in expected inflation, the term
spread, and the default spread. $\beta_{i,mp}$ is the estimated factor loading on the industrial production factor, $\beta_{i,ui}$ is the estimated factor loading on the unexpected inflation factor, $\beta_{i,dei}$ is the estimated factor loading on the change in expected inflation factor, $\beta_{i,uts}$ is the estimated factor loading on the unexpected term spread factor, $\beta_{i,upr}$ is the estimated factor loading on the unexpected default spread factor, and $\epsilon_{i,t}$ is a residual.

In the second step of the Fama-MacBeth methodology, we estimate a single cross-sectional regression of average excess returns on the factor loadings from step one:

$$\bar{r}_i = \lambda_0 + \hat{\beta}_{i,mp}\lambda_{mp} + \hat{\beta}_{i,ui}\lambda_{ui} + \hat{\beta}_{i,dei}\lambda_{dei} + \hat{\beta}_{i,uts}\lambda_{uts} + \hat{\beta}_{i,upr}\lambda_{upr} + \eta_i \quad (3)$$

where \bar{r}_i is the average excess return on portfolio i, λ_{mp} is the estimated price of risk associated with the industrial production factor, λ_{ui} is the estimated price of risk associated with the unexpected inflation factor, λ_{dei} is the estimated price of risk associated with the change in expected inflation factor, λ_{uts} is the estimated price of risk associated with the unexpected term spread factor, λ_{upr} is the estimated price of risk associated with the unexpected default spread factor, and η_i is the residual.

Table 2 reports the estimates of the prices of risk of the five global macroeconomic factors from the second step of the Fama and MacBeth (1973) procedure where we use the average excess returns on the forty eight value and momentum returns. The prices of risk associated with MP, DEI, and URP are statistically significant and economically meaningful. The price of risk associated with MP is 0.37 which means that if a portfolio has a unit beta with respect to MP this contributes 0.37 percent per month, or approximately 4.45% per year, to the average excess return of that portfolio. Except for three betas associated with fixed income that are negative (perhaps due to flight to safety) all the betas associated with MP are positive and the average across all forty eight portfolios is 0.42. There are differences in the betas across asset classes where the average beta for equity classes is 0.53 and for non-equity classes it is 0.22. Thus, the average contribution to expected returns of equities is 2.36% per annum and for non-equity classes it is 0.98% per annum. The positive sign on MP is consistent with the findings in Chen, Roll, and
Ross (1986) and Liu and Zhang (2008) and can be thought of as a reward for bearing a systematic production risk. The risk associated with MP is most likely larger in equities than non-equity classes because the cash flows of equities are more closely linked to production in the economy and is consistent with the average returns across equity classes being higher than the average returns across non-equity classes.

The price of risk of DEI is estimated to be -0.22. The negative sign of the price of risk of DEI is consistent with the estimate in Chen, Roll, and Ross (1986), and suggests that investors view positive shocks to expected inflation as adverse shocks. Across the equity classes the betas are all negative and range from -1.90 to -0.02 with an average of -0.81. Given the negative estimated price of risk, this translates into an annum average expected excess return of 2.14%. The negative loadings of equities with respect to DEI are consistent with estimates from the extant literature (see, for example, Bodie (1976) and Fama (1981)). Fama (1981) shows that the negative stock return-expected inflation relation is induced by the negative relation between expected inflation and future real activity (such as future GNP and future real investment). Stulz (1986) presents an equilibrium model in which expected real returns on common stocks are negatively related to expected inflation. Bekaert and Engstrom (2010) find that high expected inflation has tended to coincide with periods of heightened uncertainty about real economic growth and unusually high risk aversion, both of which reduce stock prices.

For fixed income portfolios the loadings with respect to DEI are also negative and large and average -0.70 implying a contribution to the annual expected excess return of 1.87%. This is not surprising as an increase in expected inflation reduces the real value of future fixed nominal cash flows. Commodities load positively on DEI. A potential explanation for this is that when expected inflation rises so does inflation uncertainty (see Ball (1992) and Grier and Perry (1998). High inflation risk raises investors’ hedging demand, and purchasing a broad basket of commodities provides protection against inflation (see Bodie (1983)).

The estimated price of risk on URP is -0.02. Rising default spreads are commonly interpreted as worsening credit conditions (see, for example, Hahn and Lee (2006)) and
therefore assets with negative loadings on UPR serve as hedges against poor credit conditions. Additionally, Boons (2016) finds that the default spread negatively predicts industrial production growth and the Chicago Fed National Activity Index. The negative price of risk of UPR is consistent with Merton’s (1973) ICAPM. That is, assets that are positively correlated with UPR can be used to hedge against worsening investment opportunities (see Santa Clara and Maio (2012) and Cooper and Maio (2019)). Most of the loadings on UPR are positive with the exception of U.S. equities, equity futures indices and some commodities which have negative loadings. The positive loadings of fixed income securities and currencies with respect to UPR possibly reflect flight to safety (recalling that the currencies are developed market currencies).

The R^2 of the cross sectional regression, calculated as in Lettau and Ludvigson (2001), is 0.51 which indicates a good fit for non-return based factors. To obtain a visual impression of how well the global CRR factors describe average excess returns, Figure 1 presents a plot of the average realized excess returns of the forty eight portfolios versus their predicted expected excess returns from equation (3). The scatter plot of the average excess returns and the expected excess returns from the CRR global factor model line up well along the 45-degree line illustrating that the five CRR factors do a reasonable job in capturing the differences in value and momentum returns across asset classes and countries.

In Table 2, we also report the average absolute pricing error which is small at 0.14% per month. We can obtain a better impression of the extent of the pricing errors in Table 3 where we report each portfolio’s pricing error along with the ratio of the average excess return to the expected excess return. The expected excess return is simply the sum of the betas times their prices of risk. The pricing errors are small over most of the asset classes and countries. This is reflected in the ratios of average to expected returns which have an mean value of 1.19 and a median value of 1.06. The pricing errors are similar across the asset classes and across value and momentum. For example, across the four regular equity classes the average pricing error is 0.17% per month. Across the remaining asset classes the pricing error is 0.13% per month. The average pricing errors across all
the value portfolios is 0.16% per month and across all the momentum portfolios it is
0.14% per month. The CRR factor model performs equally as well across asset classes
and investment styles.

In summary, Tables 2 and 3, along with Figure 1, indicate that the five global macro-
ecconomic factors explain a good part of the cross sectional variation in the forty eight
value and momentum return portfolios. This indicates that, at least to some extent, mar-
kets are integrated across asset classes and countries and that macroeconomic sources of
global risk can account for a reasonable amount of value and momentum returns.

We now turn to examining if the global macroeconomic risk factors can explain why
the twenty two value and momentum return premia have a positive return in spite of
the fact that they are negatively correlated. Moreover, can the macroeconomic factors
account for the puzzling fact that given the negative correlation between value and mo-
mementum return premia, an equal weighted combination of them also has a positive risk
premia? A first step in trying to answer these questions is to simply examine the factor
loadings of the twenty two value and momentum return premia and the combination
return premia.

Figure 2 provides the factor loadings allowing for easy comparisons across return
premia. The first panel plots the loadings on the global industrial production factor,
MP. There are opposite factor loadings on value and momentum in seven of the eleven
factors. Consistent with Liu and Zhang (2008) momentum factors load positively on MP
in most cases. For all equity markets, as well as for currencies, momentum has positive
loadings on MP. In contrast six of the eleven value returns have negative loadings on the
MP factor. The extent of the MP loadings are different for value and momentum return
premia across the different asset classes. Consequently, in most cases the combination
return premia have positive loadings on the MP factor and therefore there is a positive
expected return contribution for value and momentum combinations from exposure to
the MP factor.

We also observe similar patterns in the factor loadings for the other two statistically
significant prices of risk, DEI and UPR. The factor loadings on DEI for the value and
momentum portfolios have the opposite signs in eight cases and are negative for the value return premia and positive for the momentum return premia. The negative price of risk of DEI implies that value stocks are risky due to their exposure to shocks to expected inflation. The combination return premia tend to have a negative loading on DEI which contributes to a positive expected return for this portfolio.

In the case of the factor loadings on UPR, the value and momentum portfolios have opposite factor loadings, apart from fixed income. Ten of the value premia across countries and asset classes load positively on UPR. In contrast, all of the eleven factor loadings on the momentum return premia are negative. These negative loadings imply that momentum strategies yield poor returns during high uncertainty and poor credit condition periods, rendering these strategies risky. Overall, the positive loadings of momentum on MP and its negative loadings on UPR are consistent with the finding that momentum profits are procyclical, as also found in Chordia and Shivakumar (2002), and that momentum profits occur only during expansionary periods. The combination factor loadings on UPR are negative in all but three cases, contributing to a positive expected return for this combination return premia.

Taken together the plots show that value and momentum have generally opposite exposures to global macroeconomic risk and that the equal weighted combination of value and momentum is not neutral to global macroeconomic risk. These combinations have sizable factor loadings even if the value and momentum return premia have opposite sign exposures with respect to the global macroeconomic factors. Due to the fact that the combination strategies, across markets and across asset classes, do not have neutral loadings with respect to the global macroeconomic factors and given the estimated prices of risk in Table 2, the combination strategies have a positive expected return. The pricing errors for the combination portfolios are small with an average absolute pricing error 0.13% per month.

To illustrate more precisely that the global CRR model captures the negative correlation between the actual return premia of value and momentum strategies, we compute the correlation between value expected return premia and momentum expected return
premia that is implied by the CRR factor model and then compare this to the correlation between the actual value return premia and actual momentum return premia. The implied correlation is the correlation between the value return premia fitted values and the momentum return fitted values from the CRR model. We then compare this correlation coefficient to the correlation coefficient between value and momentum return premia calculated from their respective return series.

Table 4 presents the actual and implied correlation coefficients of value and momentum strategies for the various asset classes and markets as well as for value and momentum for global equity, global other, and global all asset classes. The global CRR model captures the negative correlation between the value and momentum strategies. The actual correlations between value and momentum return premia for U.S., U.K., European and Japanese stock returns and the equity futures country indices are -0.67, -0.64, -0.57, -0.65, and -0.46 respectively. The implied correlation coefficients from the fitted values of the CRR factor model are -0.95, -0.89, -0.89, -0.75 and -0.77, respectively. The actual correlation for non-equity asset classes are smaller at -0.42 for currencies, -0.23 for fixed income, and -0.43 for commodities. The implied correlation coefficients that we calculate from the CRR factor model are -0.62 for currencies, -0.53 for fixed income, and -0.63 commodities. When the assets are aggregated globally into global all, global equity, and global other, the actual return correlations are -0.64, -0.68, and -0.46 respectively. The implied correlations from the CRR factor model are -0.97, -0.94, and -0.82. For all of the value and momentum strategies, irrespective of asset class or country, it is reassuring to find that the CRR factor model is able to match the sign of the actual correlation coefficients. This finding strengthens the interpretation that the negative correlation between the value and momentum returns that is observed in the data is driven by the differing loadings that value and momentum portfolios have with respect to the global CRR factors.

The evidence presented so far indicates that the differing factor loadings are the source of the empirical success of the CRR factor model in describing both the negative correlation between the value and momentum strategies as well as the return premia.
on these portfolios and combinations of their factors. The results show that the ability of global macroeconomic factors to price value and momentum assets is not unique to equities but it is also present in other non-equity asset classes. This evidence contributes to the recent and ongoing research that aims to offer a unified risk-based explanation of expected returns across asset classes. We view our results as a step towards a better understanding of the factor structure that drives the cross-section of expected returns in multiple asset classes and countries, a factor structure that has its roots in observable macroeconomic risks.

4.1 Time Variation in Factor Loadings

In the empirical analysis so far, we have assumed that the betas on the macroeconomic factors are constant across the entire sample period. It is relevant to inquire whether this is actually the case and to assess if there are trends in the estimated factor loadings that might make the assumption of constant betas questionable. To illustrate the issue, we plot the loadings on all the factors for value and momentum returns when the loadings are estimated using a sixty month rolling window. Figure 3 plots the loadings for global all assets, Figure 4 for global equity, and Figure 5 for global others.15

The first noticeable pattern in all three figures is the negative correlation of the factor loadings between value and momentum. It is clear from this that the negative correlation between value and momentum factor returns, which in the previous section we showed was driven by the opposite signs on factor loadings for value and momentum returns, is evident in these plots period by period. This is the case for all assets, equities separately and other asset classes separately.

It is apparent from the figures that there is some volatility in the factor loadings which appears to be concentrated around the late 1990s and early 2000s. To try and understand why this is the case, in Figure 6, we plot the returns on the global value and momentum factors throughout the full sample period. There is a large increase in the volatility of returns around the late 1990s and early 2000s which corresponds to an increase in

15Similar patterns are observed for the individual asset classes.
the volatility in the loadings. For example, over the full sample, the mean return on the global value factor is 0.24% per month with a standard deviation of 1.61%. In the shorter sample around the increased volatility of the factor loadings the mean return and standard deviation of the value factor is 0.20% and 2.9% per month, respectively. Over the full sample period the momentum factor has a mean return of 0.34% per month and a monthly standard deviation of 2.00%. In the shorter sample period the momentum return premium is 0.75% with a standard deviation of 3.1% per month. Therefore, we see a substantial increase in the volatility of returns for both factors as well as a noticeable difference in momentum mean returns. These patterns in both returns and volatility are captured by the factors in that the factor loadings change during the period of high return volatility, driving the returns on value and momentum portfolios.

It is important to note that in Figures 2, 3, and 4, there are no trends in the factor loadings. After the period of high volatility in the factor loading in the late 1990s and the early 2000s corresponding to the high return volatility in this period, the factor loadings revert back to roughly their 1990s values. This means that full sample betas are a good approximation of the factor loadings and are useful in terms of estimating the cross-sectional regressions.

4.2 Comparing Factor Models

We now compare the performance of the CRR global macroeconomic factor model to that of other factor models. We consider the three factor model of Asness, Moskowitz, and Pedersen (2013) and the five factor model of Fama and French (2017). It is important to remember that the three factor model of Asness, Moskowitz, and Pedersen (2013) and the five factor model of Fama and French (2017) use return based factors sorted on characteristics. Factors formed in this way have an advantage over macroeconomic variables because using returns to form portfolios reduces the noise in the factors compared to using the macroeconomic factors. Furthermore, if we were to form return based factor mimicking portfolios of the macroeconomic variables using the same assets as Asness, Moskowitz, and Pedersen (2013) use when forming their value and momentum risk fac-
tors, then the mimicking macroeconomic factors will be based on a linear combination of value and momentum portfolios. One might be concerned that we capture the cross sectional variation in the value and momentum returns because the mimicking portfolios of the macroeconomic factors are a simple repackaging of the test assets themselves.

By using the raw macroeconomic factors we avoid the problems highlighted above. The drawback as far as the raw macroeconomic variables are concerned is that they are likely to lead to noisier estimates of the factors loadings and prices of risk. This should be taken into consideration when comparing factor models that are return based and factor models that use raw macroeconomic variables.

The three factors of the Asness, Moskowitz, and Pedersen (2013) model are the excess returns on the MSCI world stock market index, a global value factor and a global momentum factor. We also examine how well the Fama and French (2017) five factor model performs. The Fama and French (2017) international five factors include, in addition to the global market excess return, global return based factors sorted by size (SMB), value (HML), operating profitability (RMW) and investment (CMA). The data on the Fama and French (2017) factors are available over the sample period of 1990:7 to 2018:12. Details of these factors can be found in Fama and French (2017). Given the shorter sample period that the Fama and French (2017) factors are available over, we reestimate the CRR factor model over the shorter period. Not only does this allow us to compare the performance of the models over the same sample period, but it also provides sub-sample analysis of the CRR factor model.

Table 5 presents the performance of the three models in pricing the forty eight value and momentum portfolios. Panel A of Table 5 shows that the three factor model of Asness, Moskowitz, and Pedersen (2013) has relatively low explanatory power with an R^2 of 0.25. However, the pricing error is quite low at 0.18% per month. The market and momentum factors have statistically significant positive prices of risk, but the value factor does not help describe the cross section of the forty eight value and momentum returns.

16See, for example, the discussion in Vassalou (2003).
The global five factor model of Fama and French (2017) also has a relatively low explanatory power as seen in Panel B of Table 5. The R^2 is 0.27 and the average pricing error is 0.17% per month. The market factor’s price of risk is estimated to be positive and statistically significant. The investment factor, CMA, and the size factor, SMB both have prices of risk that are estimated to be negative and both are statistically significant. It is clear from Table 5 that the Fama and French (2017) five factor model struggles somewhat to describe the forty-eight value and momentum portfolios, at least in terms of the R^2, although the pricing errors are low. Inspite of the fact that the Fama and French (2017) model has five factors, it performs very similarly to the three factor model of Asness, Moskowitz, and Pedersen (2013).

The results from estimating the global CRR model over the shorter sample period are presented in Panel C. The pricing ability of the model is substantially better than those of the Asness, Moskowitz, and Pedersen (2013) global three factor model and the Fama and French (2017) global five factor model. Specifically, the R^2 is larger at 0.46, and the average pricing error is somewhat smaller at 0.14% per month. Based on this shorter sample period the global CRR model compares well to other factor models in pricing the forty eight value and momentum portfolios. Compared to the full sample estimates in Table 2, the estimated price of risk on MP retains its sign and statistical significance. The price of risk of 0.41 percent per month in this shorter sample, as compared to 0.37 in Table 2. The estimated prices of risk on the remaining factors are negative as they were in Table 2. However DEI loses its statistical significance which could be related to the fact that inflation has moderated somewhat in this more recent sample. UPR retains its economic and statistical significance, and UTS becomes significant with a negative price of risk of -0.04 percent per month. The estimated prices of risk and the model performance metrics from the shorter sample illustrate that the performance of the CRR model is quite stable.
4.3 Explaining the Returns on Other Assets

If the global CRR factors are common sources of global risks that drive the different factor structures across assets and across markets, and markets are to some extent integrated, then the global CRR factors should be able to explain the risk premia associated with the cross sections of other assets. Therefore, we now explore the relation between the global macroeconomic CRR factors and other cross-sections of returns.

We test the pricing ability of the model for three sets of assets all of which include 103 portfolios. These three sets of assets share the following common portfolios: the forty eight value and momentum portfolio, thirteen international betting against beta (BAB) portfolios and ten international quality portfolios from AQR. The BAB portfolios correspond to equities markets used in the Asness, Moskowitz, and Pedersen (2013) paper (excluding Portugal) as well as global equities. The BAB portfolios are long low-beta securities and short high-beta securities. The quality portfolios are long high quality and short low quality (junk) stocks. Quality is measured as a combination of a firm’s profitability, growth, stability and payout.\(^{17}\) The first set of test assets adds to these portfolios thirty two portfolios of international stock returns sorted on size, book-to-market, and operating profitability constructed by Fama and French (2017).

The second set of test assets uses an alternative set of Fama and French portfolios which are thirty two portfolios sorted on size, book-to-market and investment. The third set of test assets considers a third set of Fama and French portfolios which are thirty two portfolios formed on size, operating profit, and investment.

We choose to examine the ability of the CRR factor model to price the three sets of thirty two portfolios because Fama and French (2017) claim that size, book to market, investment and profitability characteristics, which make up the assets in their various portfolios, dominate and span the huge set of characteristics that have been identified in the literature and has led them to form their five factor model. Details of the these test assets can be found in Fama and French (2017). As noted earlier, the sample period is

\(^{17}\)Details on the construction of the betting against beta portfolios and the quality portfolios can be found in Frazzini and Pedersen (2013) and Assnes, Frazzini, and Pedersen (2014). These data are from aqr.com.
shorter than that of the forty eight value and momentum portfolios, ranging from 1990:7 to 2018:12.

Table 6 reports the results from estimating the CRR factor model for these three sets of 103 tests assets. Panel A presents the results for the first set of additional tests assets and shows that there are three statistically significant prices of risk associated with \textit{DEI}, \textit{UPR} and \textit{UI}. Relative to the results in Table 2 that employ only the forty eight value and momentum portfolios, the price of risk on \textit{UI} is now statistically significant and the price of risk on \textit{MP} is no longer statistically significant. The price of risk associated with \textit{DEI} has changed sign which is not necessarily a concern given that we are pricing a different set of assets relative to Table 2.\footnote{The change in the sign of the estimated prices of risk when using different test assets also occurs when we consider other factor models, see Table 7.} The R^2 is 0.32 and the pricing errors are reasonably small with an average of 0.19% per month.

Panel B of Table 6 shows that the model performs slightly worse when pricing the second set of assets producing an R^2 of 0.25 and the average pricing error is 0.22% per month. The prices of risk have the same sign has those in Panel A except the sign on UTS that changes, however this price of risk in not statistically significant in either panel. The remaining prices of risk are quite similar in magnitude and statistical significance to those in Panel A. The results for the third set of test assets in Panel C, are very similar to those in Panel B in terms of the estimated prices of risk and the R^2 which is 0.27 and the average pricing error which is 0.23% per month. When compared to the performance of the CRR factor model for the 48 value and momentum portfolios, there is a deterioration in the performance of the CRR factor model for this extended set of test assets.

We now turn to examine how well the Fama and French (2017) model performs on this extended set of assets. This is an interesting exercise and comparison for the CRR factor model because the Fama and French (2017) factors are based on the three sets of Fama and French (2017) test assets. Panel A of Table 7 shows the result for pricing the first broad set of assets that includes the forty eight value and momentum portfolios, the thirty two international portfolios sorted on size, book-to-market and operating profitability, the thirteen BAB portfolios and the ten quality portfolios. While the prices of risk of all five
Fama and French (2017) factors are positive, the only statistically significant factor is the profitability factor, RMW. The R^2 is 0.33 and the average pricing error is 0.18 percent per month, compared with an R^2 of 0.31 and average pricing error of 0.19% per month, respectively for the global CRR factor as seen in Panel A of Table 6.

Panel B of Table 7 shows that the international five factor model performs better than the global CRR in pricing the second large set of test assets at least in terms of the R^2 which is 0.42. The average of the pricing errors is 0.23% per month. For comparison, the corresponding R^2 and average pricing errors for the CRR factor model in Panel B of Table 6 are 0.25 and 0.22% per month, respectively. Thus, the explanatory power of the Fama and French (2017) model is better, but in terms of the pricing errors, the models perform similarly. The only estimated price of risk that is positive and statistically significant is RMW. The market factor has a statistically significant price of risk but it has a negative sign. In Panel B, relative to Panel A, we see a change in the sign on the market and size factors with the market factor now commanding a statistically significant negative price of risk.

Panel C of table 7 presents the result for pricing the set of test assets which includes the thirty two portfolios sorted on size, operating profits, and investment. The estimated prices of risk have the same sign as those in Panel B and those that are statistically significant in Panel C are the same as those in Panel B. The values of the R^2, 0.29 and the average pricing error, 0.23% per month are very similar to the result from the CRR factor model in Panel C of Table 6.

When comparing the results in Table 7 to those in Table 5, we see that there are numerous changes in sign on the Fama and French (2017) estimated prices of risk when pricing the forty eight value and momentum portfolios (Table 5) and pricing the various sets of extended assets (Table 7). For example, in Table 5 the market factor and the profitability factor were both estimated to be positive. The size, book to market and investment factor all have estimated prices of risk that are negative. In Table 7, Panel A, all of the Fama and French (2017) factors are estimated to be positive. In Panel B, the estimates of the market and size factor become negative, the remaining factors have
positive estimates of their prices of risk. In Panel C, there is also a change in the sign on
the estimate of the investment factor’s price of risk. The choice of test assets does have
an effect on the sign of the prices of risk for both the CRR factor model and the Fama
and French (2017) factor model.

In summary, the Fama and French (2017) five factor model performs around the same
as the CRR factor model even though we might expect the Fama and French model
to perform better because the Fama and French factors are sorts of stocks based on
size, operating profitability, and investment, the same testing portfolio that the model is
pricing.

The evidence presented in this section that the CRR factor model performs approx-
imately the same as the Fama and French (2017) model in describing these additional
assets, coupled with the earlier findings that the value and momentum returns across
markets and asset classes are related to global macroeconomic risk, strengthens our in-
terpretation that the global CRR factors represent common sources of risk driving the
various factor structures across asset classes and countries.

5 Conclusion

This paper shows that global risk in the form of exposure to the global CRR macro-
economic factors plays an important role in summarizing the average returns on value
and momentum strategies as well as their combinations across many asset classes and
markets. Importantly, the global CRR model accounts for the positive premia on value
and momentum strategies as well as for their negative correlations.

A major advantage of the global CRR factor model is that risks in financial markets are
associated with global macroeconomic variables and the global business cycle. Therefore,
the global macroeconomic model enhances our understanding of the underlying economic
sources driving the patterns in returns across markets and across asset classes, something
which is more challenging when using characteristic-based factors.

In addition to the CRR global factor model’s success in summarizing the forty eight
value and momentum portfolio returns from Asness, Moskowitz, and Pedersen (2013), the model also performs quite well in describing the cross sections of international portfolios returns sorted on size, book-to-market, operating profitability, investment, betting-against beta, and quality.

Linking the variation of expected returns across asset classes and countries and identifying their common factor structure are important research questions. Our results provide support for a unified risk view across asset classes and across countries thus contributing to the asset pricing literature that explores the joint cross section of expected returns in multiple asset classes and countries.
References

Table 1
Summary Statistics

Panel A of Table 1 reports average excess returns along with t-statistics on portfolios sorted on value and momentum, as well as value and momentum factors and an equal-weighted (50/50) combination premium in each market and asset class we study: U.S. stocks (U.S.), U.K. stocks (U.K.), Europe stocks (EU), Japan stocks (JP), country futures equity indices (EI), currencies (CR), fixed income government bonds (FI), and commodities (CM). Securities are sorted by value characteristics and momentum into thirds, with \(V_1 \) (\(M_1 \)) indicating the lowest value (momentum) group; \(V_2 \) (\(M_2 \)), the medium value (momentum) group; and \(V_3 \) (\(M_3 \)), the highest value (momentum) group. The value and momentum factors are the high (\(V_3 \) or \(M_3 \)) minus low (\(V_1 \) or \(M_1 \)) spread in returns and are denoted \(V \) and \(M \), respectively. The combination portfolios are a 50/50 combination of the value and momentum thirds (in the last column, denoted \(C \)). We also consider value and momentum premia across all markets and asset classes (denoted \(All \)), for value and for momentum, across all stock markets (denoted \(Eq \)), and across all non-equity asset classes (denoted \(O \)). Panel B reports the average correlation of value and momentum return premia within each market and asset class. t-statistics are in the parentheses. The sample period starts in April 1983 and ends in December 2018.

Panel A - Average Excess Returns

<table>
<thead>
<tr>
<th></th>
<th>(V_1)</th>
<th>(V_2)</th>
<th>(V_3)</th>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(M_3)</th>
<th>(V)</th>
<th>(M)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>0.59</td>
<td>0.62</td>
<td>0.68</td>
<td>0.52</td>
<td>0.59</td>
<td>0.79</td>
<td>0.17</td>
<td>0.42</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>(2.56)</td>
<td>(3.11)</td>
<td>(3.20)</td>
<td>(2.10)</td>
<td>(3.06)</td>
<td>(3.38)</td>
<td>(0.81)</td>
<td>(1.84)</td>
<td>(3.26)</td>
</tr>
<tr>
<td>U.K.</td>
<td>0.46</td>
<td>0.56</td>
<td>0.76</td>
<td>0.17</td>
<td>0.75</td>
<td>0.85</td>
<td>0.32</td>
<td>0.79</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>(1.97)</td>
<td>(2.21)</td>
<td>(2.81)</td>
<td>(0.55)</td>
<td>(3.17)</td>
<td>(3.20)</td>
<td>(1.65)</td>
<td>(3.56)</td>
<td>(6.19)</td>
</tr>
<tr>
<td>EU</td>
<td>0.68</td>
<td>0.75</td>
<td>0.90</td>
<td>0.47</td>
<td>0.74</td>
<td>0.91</td>
<td>0.16</td>
<td>0.61</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>(2.68)</td>
<td>(3.07)</td>
<td>(3.46)</td>
<td>(1.56)</td>
<td>(3.08)</td>
<td>(3.55)</td>
<td>(1.14)</td>
<td>(3.28)</td>
<td>(4.97)</td>
</tr>
<tr>
<td>JP</td>
<td>0.07</td>
<td>0.41</td>
<td>0.72</td>
<td>0.22</td>
<td>0.25</td>
<td>0.38</td>
<td>0.69</td>
<td>0.20</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(1.47)</td>
<td>(2.51)</td>
<td>(0.67)</td>
<td>(0.91)</td>
<td>(1.26)</td>
<td>(3.57)</td>
<td>(0.88)</td>
<td>(4.99)</td>
</tr>
<tr>
<td>EI</td>
<td>0.42</td>
<td>0.59</td>
<td>0.70</td>
<td>0.28</td>
<td>0.65</td>
<td>0.78</td>
<td>0.25</td>
<td>0.44</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>(1.97)</td>
<td>(2.72)</td>
<td>(3.08)</td>
<td>(1.26)</td>
<td>(3.09)</td>
<td>(3.49)</td>
<td>(2.09)</td>
<td>(2.96)</td>
<td>(4.86)</td>
</tr>
<tr>
<td>CR</td>
<td>0.02</td>
<td>0.11</td>
<td>0.22</td>
<td>0.00</td>
<td>0.14</td>
<td>0.19</td>
<td>0.23</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td>(0.98)</td>
<td>(2.01)</td>
<td>(0.01)</td>
<td>(1.26)</td>
<td>(1.65)</td>
<td>(2.16)</td>
<td>(1.32)</td>
<td>(3.18)</td>
</tr>
<tr>
<td>FI</td>
<td>0.21</td>
<td>0.30</td>
<td>0.28</td>
<td>0.27</td>
<td>0.23</td>
<td>0.29</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(2.32)</td>
<td>(4.00)</td>
<td>(3.82)</td>
<td>(3.05)</td>
<td>(3.11)</td>
<td>(3.64)</td>
<td>(0.69)</td>
<td>(0.91)</td>
<td>(1.25)</td>
</tr>
<tr>
<td>CM</td>
<td>-0.03</td>
<td>0.20</td>
<td>0.41</td>
<td>-0.12</td>
<td>0.07</td>
<td>0.57</td>
<td>0.42</td>
<td>0.64</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.98)</td>
<td>(1.89)</td>
<td>(0.52)</td>
<td>(0.40)</td>
<td>(2.38)</td>
<td>(1.55)</td>
<td>(2.48)</td>
<td>(3.72)</td>
</tr>
</tbody>
</table>

Panel B - Correlations

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>U.K.</th>
<th>EU</th>
<th>JP</th>
<th>EI</th>
<th>CR</th>
<th>FI</th>
<th>All</th>
<th>Eq</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>-0.67</td>
<td>-0.64</td>
<td>-0.57</td>
<td>-0.65</td>
<td>-0.46</td>
<td>-0.42</td>
<td>-0.23</td>
<td>-0.64</td>
<td>-0.68</td>
<td>-0.46</td>
</tr>
<tr>
<td>(M)</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Prices of Risk Estimates from a Two-Step Estimation

This table reports prices of risk estimates for the five global Chen, Roll, and Ross (1986) factors, including industrial production (MP), unexpected inflation (UI), change in expected inflation (DEI), term spread (UTS), and default spread (UPR) using the Fama and MacBeth (1973) two-step estimation methodology. The test assets are the forty eight value and momentum portfolios from Asness, Moskowitz, and Pedersen (2013). The first step estimates the factor loadings for each of the forty eight portfolios with a time series regression of the portfolio excess returns on the five global CRR portfolios, using the entire sample period, as in Equation (2). The second step is a cross sectional regression of average excess portfolio returns on the estimated loadings as in Equation (3). We report results from the second-step including the intercepts ($\hat{\gamma}_0$), price of risk ($\hat{\gamma}$), the cross-sectional regression R^2s as calculated in Lettau and Ludvigson (2001), and the average pricing error. The average pricing error is the square root of the squared values of the residuals in the second step regression in equation (3). The intercept and the prices of risk are in percentage per month. The sample period is April 1983 through December 2018.

<table>
<thead>
<tr>
<th>$\hat{\gamma}_0$</th>
<th>$\hat{\gamma}_{MP}$</th>
<th>$\hat{\gamma}_{UI}$</th>
<th>$\hat{\gamma}_{DEI}$</th>
<th>$\hat{\gamma}_{UTS}$</th>
<th>$\hat{\gamma}_{UPR}$</th>
<th>$\overline{R^2}$(%)</th>
<th>Avg. P.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of risk</td>
<td>0.272</td>
<td>0.371</td>
<td>-0.027</td>
<td>-0.217</td>
<td>-0.021</td>
<td>-0.017</td>
<td>50.5</td>
</tr>
<tr>
<td>t-statistic</td>
<td>4.212</td>
<td>3.521</td>
<td>-0.662</td>
<td>-4.513</td>
<td>-1.059</td>
<td>-4.164</td>
<td></td>
</tr>
</tbody>
</table>
Table 3
Pricing errors: 48 Value and Momentum Portfolios

This table reports the pricing errors (denoted P.E.) of the Chen, Roll, and Ross (1986) model for the forty eight value and momentum portfolios of Asness, Moskowitz, and Pedersen (2013). Also reported is the ratio of average actual excess portfolio returns to expected excess portfolio returns (denoted AR/ER), where expected excess returns are the sum of the products of the factor loadings (estimated using the entire sample period) and the estimated prices of risk. Securities are sorted by value and momentum into thirds, with V_1 (M_1) indicating the lowest value (momentum) group; V_2 (M_2), the medium value (momentum) group; and V_3 (M_3), the highest value (momentum) group. The sample period is April 1983 through December 2018.

<table>
<thead>
<tr>
<th></th>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.086</td>
<td>1.171</td>
<td>0.108</td>
<td>1.211</td>
<td>0.299</td>
<td>1.794</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>1.317</td>
<td>0.234</td>
<td>1.651</td>
<td>0.211</td>
<td>1.366</td>
</tr>
<tr>
<td></td>
<td>−0.114</td>
<td>0.803</td>
<td>0.013</td>
<td>1.023</td>
<td>0.261</td>
<td>1.518</td>
</tr>
<tr>
<td></td>
<td>−0.389</td>
<td>0.302</td>
<td>0.228</td>
<td>1.436</td>
<td>0.058</td>
<td>1.074</td>
</tr>
<tr>
<td>EU</td>
<td>P.E.</td>
<td>AR/ER</td>
<td>P.E.</td>
<td>AR/ER</td>
<td>P.E.</td>
<td>AR/ER</td>
</tr>
<tr>
<td></td>
<td>−0.120</td>
<td>0.850</td>
<td>0.087</td>
<td>1.132</td>
<td>0.146</td>
<td>1.194</td>
</tr>
<tr>
<td></td>
<td>−0.232</td>
<td>−0.014</td>
<td>−0.232</td>
<td>−0.014</td>
<td>0.128</td>
<td>1.164</td>
</tr>
<tr>
<td></td>
<td>−0.371</td>
<td>0.850</td>
<td>0.101</td>
<td>1.330</td>
<td>0.549</td>
<td>4.187</td>
</tr>
<tr>
<td></td>
<td>−0.157</td>
<td>1.301</td>
<td>0.078</td>
<td>4.187</td>
<td>−0.156</td>
<td>−0.122</td>
</tr>
<tr>
<td>EI</td>
<td>P.E.</td>
<td>AR/ER</td>
<td>P.E.</td>
<td>AR/ER</td>
<td>P.E.</td>
<td>AR/ER</td>
</tr>
<tr>
<td></td>
<td>−0.229</td>
<td>0.648</td>
<td>−0.020</td>
<td>0.967</td>
<td>0.247</td>
<td>1.550</td>
</tr>
<tr>
<td></td>
<td>−0.122</td>
<td>0.699</td>
<td>0.078</td>
<td>1.550</td>
<td>−0.156</td>
<td>0.096</td>
</tr>
<tr>
<td>CU</td>
<td>P.E.</td>
<td>AR/ER</td>
<td>P.E.</td>
<td>AR/ER</td>
<td>P.E.</td>
<td>AR/ER</td>
</tr>
<tr>
<td></td>
<td>−0.247</td>
<td>0.085</td>
<td>0.007</td>
<td>1.075</td>
<td>0.057</td>
<td>1.355</td>
</tr>
<tr>
<td></td>
<td>−0.155</td>
<td>0.009</td>
<td>−0.155</td>
<td>1.355</td>
<td>0.029</td>
<td>0.140</td>
</tr>
<tr>
<td>FI</td>
<td>P.E.</td>
<td>AR/ER</td>
<td>P.E.</td>
<td>AR/ER</td>
<td>P.E.</td>
<td>AR/ER</td>
</tr>
<tr>
<td></td>
<td>−0.146</td>
<td>0.589</td>
<td>−0.078</td>
<td>0.796</td>
<td>−0.060</td>
<td>0.824</td>
</tr>
<tr>
<td></td>
<td>−0.167</td>
<td>0.618</td>
<td>−0.167</td>
<td>0.618</td>
<td>−0.072</td>
<td>0.763</td>
</tr>
<tr>
<td>CM</td>
<td>P.E.</td>
<td>AR/ER</td>
<td>P.E.</td>
<td>AR/ER</td>
<td>P.E.</td>
<td>AR/ER</td>
</tr>
<tr>
<td></td>
<td>−0.274</td>
<td>−0.139</td>
<td>0.053</td>
<td>1.352</td>
<td>0.079</td>
<td>1.238</td>
</tr>
<tr>
<td></td>
<td>−0.102</td>
<td>8.853</td>
<td>−0.102</td>
<td>8.853</td>
<td>−0.172</td>
<td>0.191</td>
</tr>
<tr>
<td></td>
<td>0.294</td>
<td>0.294</td>
<td>0.294</td>
<td>0.294</td>
<td>0.191</td>
<td>1.501</td>
</tr>
</tbody>
</table>
Table 4
Implied Correlations

This table presents actual and implied time series correlation coefficients between value and momentum strategies in the different markets and asset classes. The implied correlations are the correlations between the time series of the fitted values of the value and momentum return premia within the market or asset class. The fitted values are obtained from time series regressions of the value and momentum return premia on the five global Chen, Roll, and Ross (1986) macroeconomic factors. The sample period is April 1983 through December 2018.

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>U.K.</th>
<th>EU</th>
<th>JP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{V,M}$</td>
<td>-0.67</td>
<td>-0.64</td>
<td>-0.57</td>
<td>-0.65</td>
</tr>
<tr>
<td>$p_{implied}$</td>
<td>-0.95</td>
<td>-0.89</td>
<td>-0.89</td>
<td>-0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>EI</th>
<th>CR</th>
<th>FI</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{V,M}$</td>
<td>-0.46</td>
<td>-0.42</td>
<td>-0.23</td>
<td>-0.43</td>
</tr>
<tr>
<td>$p_{implied}$</td>
<td>-0.77</td>
<td>-0.62</td>
<td>-0.53</td>
<td>-0.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Global all</th>
<th>Global stocks</th>
<th>Global other</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{V,M}$</td>
<td>-0.64</td>
<td>-0.68</td>
<td>-0.46</td>
</tr>
<tr>
<td>$p_{implied}$</td>
<td>-0.97</td>
<td>-0.94</td>
<td>-0.82</td>
</tr>
</tbody>
</table>
This table presents estimates of prices of risk. The test assets are the forty eight value and momentum portfolios. The estimation methodology is the same as the methodology described in Table 2. In Panel A we estimate the prices of risk of the Asness, Moskowitz, and Pedersen (2013) three factor model. The factors are the global market return, and global value and momentum factors. Panel B presents the results for the global five factor model of Fama and French (2017). The estimation results for the global Chen, Roll, and Ross (1986) factors, including industrial production (\(MP\)), unexpected inflation (\(UI\)), change in expected inflation (\(DEI\)), term spread (\(UTS\)), and default spread (\(UPR\)) appears in Panel C. \(\hat{\gamma}_m\) is the estimated price of risk of the global market portfolio, \(\hat{\gamma}_{val}\) and \(\hat{\gamma}_{mom}\) are the estimated price of risk of the global value factor and global momentum factor, respectively. \(\hat{\gamma}_{SMB}\), \(\hat{\gamma}_{HML}\), \(\hat{\gamma}_{RMW}\), and \(\hat{\gamma}_{CMA}\) are the estimated prices of risk of the size, value, profitability, and investment factors, respectively. The intercepts and the risk premiums are in percentage per month. The \(R^2\)s are calculated as in Lettau and Ludvigson (2001). The average pricing error (denoted Avg. P.E.) is the square root of the squared values of the residuals in the second step regression in equation (3). The sample period is July 1990 through December 2018.

Panel A: AMP factors

<table>
<thead>
<tr>
<th>(\hat{\gamma}_0)</th>
<th>(\hat{\gamma}_m)</th>
<th>(\hat{\gamma}_{val})</th>
<th>(\hat{\gamma}_{mom})</th>
<th>(R^2(%))</th>
<th>Avg.P.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of Risk</td>
<td>0.115</td>
<td>0.301</td>
<td>0.092</td>
<td>0.249</td>
<td>25.3</td>
</tr>
<tr>
<td>t-statistic</td>
<td>1.703</td>
<td>3.471</td>
<td>0.989</td>
<td>2.850</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Fama French factors

<table>
<thead>
<tr>
<th>(\hat{\gamma}_0)</th>
<th>(\hat{\gamma}_m)</th>
<th>(\hat{\gamma}_{SMB})</th>
<th>(\hat{\gamma}_{HML})</th>
<th>(\hat{\gamma}_{RMW})</th>
<th>(\hat{\gamma}_{CMA})</th>
<th>(R^2(%))</th>
<th>Avg.P.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of Risk</td>
<td>0.209</td>
<td>0.185</td>
<td>-0.385</td>
<td>-0.164</td>
<td>0.248</td>
<td>-0.274</td>
<td>27.0</td>
</tr>
<tr>
<td>t-statistic</td>
<td>3.010</td>
<td>2.145</td>
<td>-2.164</td>
<td>-1.190</td>
<td>1.795</td>
<td>-2.183</td>
<td></td>
</tr>
</tbody>
</table>

Panel C: Global CRR factors

<table>
<thead>
<tr>
<th>(\hat{\gamma}_0)</th>
<th>(\hat{\gamma}_{MP})</th>
<th>(\hat{\gamma}_{UI})</th>
<th>(\hat{\gamma}_{DEI})</th>
<th>(\hat{\gamma}_{UTS})</th>
<th>(\hat{\gamma}_{UPR})</th>
<th>(R^2(%))</th>
<th>Avg.P.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of Risk</td>
<td>0.340</td>
<td>0.414</td>
<td>-0.049</td>
<td>-0.057</td>
<td>-0.037</td>
<td>-0.022</td>
<td>46.4</td>
</tr>
<tr>
<td>t-statistic</td>
<td>5.553</td>
<td>3.741</td>
<td>-1.234</td>
<td>-0.841</td>
<td>-2.644</td>
<td>-4.592</td>
<td></td>
</tr>
</tbody>
</table>
Table 6
Global macroeconomic risk and other cross sections of returns

This table presents price of risk estimates for the global Chen, Roll, and Ross (1986) factors, including industrial production (MP), unexpected inflation (UI), change in expected inflation (DEI), term spread (UTS), and default spread (UPR), using the Fama and MacBeth (1973) two-step estimation methodology. The test assets in Panel A are the forty eight value and momentum portfolios of Asness, Moskowitz, and Pedersen (2013), thirty two international portfolios sorted on size, book-to-market, and operating profitability, formed across developed markets and constructed by Fama and French (2017), thirteen international zero investment betting against beta factors (zero investment portfolios) from AQR, and ten U.S. portfolios sorted on quality from AQR, for a total of 103 testing assets. In the test assets in Panel B, thirty two international portfolios sorted on size, book-to-market and investment replace the thirty two Fama and French portfolios in Panel A, and the rest of the assets are the same as in Panel A. Panel C includes, in addition to the forty eight value and momentum portfolios, thirty two international Fama and French portfolios sorted on size, investment, and operating profitability, thirteen international zero investment betting against beta portfolios, and ten U.S. portfolios sorted on quality. In the first step, we estimate the factor loadings for each of the test assets with a time series regression of the portfolio excess returns (or zero investment portfolio) on the five global CRR portfolios using the entire sample period as in Equation (2). The second step is a cross sectional regression of average excess portfolio returns on the estimated loadings as in Equation (3). We report results from the second-step including the intercepts ($\hat{\beta}_0$), prices of risk ($\hat{\beta}$), a second-stage cross-sectional regression R^2 calculated as in Lettau and Ludvigson (2001), and the average pricing errors. The average pricing error is the square root of the squared values of the residuals in the second step regression in equation (3). The intercepts and the prices of risk are in percentage per month. The sample period is July 1990 through December 2018.

Panel A: 48 value and momentum, 32 size, BM, OP, 13 BAB and 10 Quality portfolios

<table>
<thead>
<tr>
<th>$\hat{\gamma}_0$</th>
<th>$\hat{\gamma}_{MP}$</th>
<th>$\hat{\gamma}_{UI}$</th>
<th>$\hat{\gamma}_{DEI}$</th>
<th>$\hat{\gamma}_{UTS}$</th>
<th>$\hat{\gamma}_{UPR}$</th>
<th>R^2 (%)</th>
<th>Avg.P.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of Risk</td>
<td>0.430</td>
<td>0.119</td>
<td>-0.137</td>
<td>0.155</td>
<td>0.003</td>
<td>-0.019</td>
<td>31.7</td>
</tr>
<tr>
<td>t-statistic</td>
<td>6.933</td>
<td>1.385</td>
<td>-4.226</td>
<td>3.436</td>
<td>0.442</td>
<td>-4.919</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: 48 value and momentum, 32 size, BM, Investment, 13 BAB and 10 Quality portfolios

<table>
<thead>
<tr>
<th>$\hat{\gamma}_0$</th>
<th>$\hat{\gamma}_{MP}$</th>
<th>$\hat{\gamma}_{UI}$</th>
<th>$\hat{\gamma}_{DEI}$</th>
<th>$\hat{\gamma}_{UTS}$</th>
<th>$\hat{\gamma}_{UPR}$</th>
<th>R^2 (%)</th>
<th>Avg.P.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of Risk</td>
<td>0.429</td>
<td>0.060</td>
<td>-0.144</td>
<td>0.218</td>
<td>-0.009</td>
<td>-0.013</td>
<td>25.3</td>
</tr>
<tr>
<td>t-statistic</td>
<td>6.066</td>
<td>0.603</td>
<td>-3.814</td>
<td>4.224</td>
<td>-0.860</td>
<td>-2.922</td>
<td></td>
</tr>
</tbody>
</table>

Panel C: 48 value and momentum, 32 size, OP, Investment, 13 BAB and 10 Quality portfolios

<table>
<thead>
<tr>
<th>$\hat{\gamma}_0$</th>
<th>$\hat{\gamma}_{MP}$</th>
<th>$\hat{\gamma}_{UI}$</th>
<th>$\hat{\gamma}_{DEI}$</th>
<th>$\hat{\gamma}_{UTS}$</th>
<th>$\hat{\gamma}_{UPR}$</th>
<th>R^2 (%)</th>
<th>Avg.P.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of Risk</td>
<td>0.466</td>
<td>0.038</td>
<td>-0.180</td>
<td>0.226</td>
<td>-0.008</td>
<td>-0.012</td>
<td>26.7</td>
</tr>
<tr>
<td>t-statistic</td>
<td>6.048</td>
<td>0.352</td>
<td>-4.421</td>
<td>3.952</td>
<td>-0.782</td>
<td>-2.446</td>
<td></td>
</tr>
</tbody>
</table>
Table 7
Estimates of prices of risk - Fama French factors

This table reports estimates of prices of risk for the five global Fama and French (2017) factors, including a global market portfolio, global size factor (SMB), global value factor (HML), global profitability factor (RMW), and a global investment factor (CMA). The test assets in Panel A are the forty eight value and momentum portfolios of Asness, Moskowitz, and Pedersen (2013), thirty two international portfolios sorted on size, book-to-market, and operating profitability, formed across developed markets and constructed by Fama and French, thirteen international zero investment betting against beta factors from AQR, and ten international portfolios sorted on quality from AQR, for a total of 103 testing assets. In the test assets in Panel B thirty two international portfolios sorted on size, book-to-market and investment replace the thirty two Fama and French (2017) portfolios in Panel A and the rest of the assets are the same as in Panel A. Panel C includes, in addition to the forty eight value and momentum portfolios, thirty two international Fama and French portfolios sorted on size, investment, and operating profitability, thirteen international zero investment betting against beta portfolios, and ten U.S. portfolios sorted on quality. The estimation follows the Fama and MacBeth (1973) two-step methodology. In the first step we estimate the factor loadings on the Fama and French international five factors for each of the test assets with a time series regression of the portfolio excess returns (or zero investment portfolio) on the five global CRR portfolios, using the entire sample period. The second step is a cross sectional regression of average excess portfolio returns on the estimated loadings. We report results from the second-step including the intercepts ($\hat{\gamma}_0$), prices of risk ($\hat{\gamma}$), a second-stage cross-sectional regression R^2 calculated as in Lettau and Ludvigson (2001), and the average pricing errors. The average pricing error is the square root of the squared values of the residuals in the second step regression. The intercepts and the prices of risk are in percentage per month. The sample period is July 1990 through December 2018.

Panel A: 48 value and momentum, 32 size, BM, OP, 13 BAB and 10 Quality portfolios

<table>
<thead>
<tr>
<th>$\hat{\gamma}_0$</th>
<th>$\hat{\gamma}_m$</th>
<th>$\hat{\gamma}_{SMB}$</th>
<th>$\hat{\gamma}_{HML}$</th>
<th>$\hat{\gamma}_{RMW}$</th>
<th>$\hat{\gamma}_{CMA}$</th>
<th>R^2 (%)</th>
<th>Avg.P.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of Risk</td>
<td>0.325</td>
<td>0.071</td>
<td>0.066</td>
<td>0.140</td>
<td>0.394</td>
<td>0.017</td>
<td>33.0</td>
</tr>
<tr>
<td>t-statistic</td>
<td>5.581</td>
<td>1.064</td>
<td>0.976</td>
<td>1.787</td>
<td>5.572</td>
<td>0.198</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: 48 value and momentum, 32 size, BM, Investment, 13 BAB and 10 Quality portfolios

<table>
<thead>
<tr>
<th>$\hat{\gamma}_0$</th>
<th>$\hat{\gamma}_m$</th>
<th>$\hat{\gamma}_{SMB}$</th>
<th>$\hat{\gamma}_{HML}$</th>
<th>$\hat{\gamma}_{RMW}$</th>
<th>$\hat{\gamma}_{CMA}$</th>
<th>R^2 (%)</th>
<th>Avg.P.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of Risk</td>
<td>0.379</td>
<td>-0.160</td>
<td>-0.110</td>
<td>0.194</td>
<td>0.479</td>
<td>0.038</td>
<td>42.3</td>
</tr>
<tr>
<td>t-statistic</td>
<td>5.797</td>
<td>-2.134</td>
<td>-1.516</td>
<td>1.852</td>
<td>6.357</td>
<td>0.447</td>
<td></td>
</tr>
</tbody>
</table>

Panel C: 48 value and momentum, 32 size, OP, Investment, 13 BAB and 10 Quality portfolios

<table>
<thead>
<tr>
<th>$\hat{\gamma}_0$</th>
<th>$\hat{\gamma}_m$</th>
<th>$\hat{\gamma}_{SMB}$</th>
<th>$\hat{\gamma}_{HML}$</th>
<th>$\hat{\gamma}_{RMW}$</th>
<th>$\hat{\gamma}_{CMA}$</th>
<th>R^2 (%)</th>
<th>Avg.P.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of Risk</td>
<td>0.395</td>
<td>-0.178</td>
<td>-0.065</td>
<td>0.121</td>
<td>0.432</td>
<td>-0.003</td>
<td>0.286</td>
</tr>
<tr>
<td>t-statistic</td>
<td>5.828</td>
<td>-2.333</td>
<td>-0.857</td>
<td>1.300</td>
<td>4.609</td>
<td>-0.035</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Asset pricing tests of the cross section of expected returns: 48 value and momentum portfolios. Plotted are the actual average excess portfolio returns versus model-implied expected returns of the 48 value and momentum low, middle, and high portfolios in each market and asset class. The expected returns are from the CRR factor model consisting of the five global CRR factors, that is, industrial production growth, MP, unexpected inflation, UI, change in expected inflation, DEI, term spread, UTS, and default spread, UPR. A 45 line that passes through the origin is added to highlight pricing errors given by the vertical distances to the 45 line. The sample period is April 1983 to December 2018 for a total of 429 observations.
Figure 2: Factor loadings of value and momentum premia. Plotted are the loadings with respect to the Chen, Roll, and Ross (1986) (CRR) global factors for the value and momentum strategies.
Figure 3: Rolling window estimation of the factor loadings. This figure presents the estimates of the factor loadings with respect to the global CRR factors of the value and momentum premia within global all assets, global equities, and global non-equity assets. The estimated loadings at each point in time is based on a 60-month time series multiple regression of the premia on the five global CRR factor. The beginning of the estimation window is month t-60 and the end of the window is month t-1. For global all assets the value and momentum premia are averages of the value and momentum factors across all markets and asset classes. For global equities the value and momentum premia are averages of the value and momentum factors across all markets (U.S., U.K., Europe, Japan, and equity futures indices). For global other assets the value and momentum premia are averages of the value and momentum factor for currencies, fixed income, and commodities. The sample period is April 1983 to December 2018. The sample period is April 1983 to December 2018.
Figure 4: **Value and momentum premia returns.** This figure presents the returns on the value and momentum premia for global all asset classes. The value and momentum premia are averages of the value and momentum factors across all markets and asset classes. The sample period is April 1983 to December 2018.
Global Value and Momentum Returns

Global All Asset Return: Value

-0.125 -0.100 -0.075 -0.050 -0.025 -0.000 0.025 0.050 0.075 0.100

Global All Asset Return: Momentum

-0.100 -0.075 -0.050 -0.025 -0.000 0.025 0.050 0.075 0.100