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Abstract

Discount rate variation is driven by a short run business cycle component and a

longer run trend component. Unlike long horizon investors, short term investors are

not compensated with the improved long term prospects for poor returns driven by

long term discount rate shocks. Thus, heterogeneity of investors’horizon implies

that long term discount rate news command a higher price of risk. We test a three

factor model and find that both discount rate shocks, as well as cash flow shocks,

are priced. Consistent with the intuition above, long term discount rates earn a

substantially higher price of risk.
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1 Introduction

Discount rates are time-varying (Cochrane (2011)). This statement is supported by a host

of variables that have been shown to predict returns.1 The extant literature has focusbed

on which variables better predict returns, why certain variables predict returns, and

methodologies to assess in-sample and out-of sample predictability at different horizons.

These questions have addressed the issue of how much discount rates vary over time.

In this paper, we focus on the information content of different predictor variables of

the short end and long end of the term structure of discount rates, and subsequently

ask a new question: how does this translate into a factor structure for expected returns?

This question is raised in Cochrane’s (2011) American Finance Association Presidential

address where he asks "what is the factor structure of time varying expected returns?" and

he emphasizes that "As we pursue the multivariate forecasting question using the large

number of additional forecasting variables, we should look at pricing implications, and

not just run short-run R2 contests". This paper is an attempt to address this question.

If there exists discount rate variation it will lead to state-variable hedging. Campbell

and Vuolteenaho (2004) estimate a two factor intertemporal capital asset pricing model

(ICAPM) where news about discount rates and cash flows is important in describing the

1Stock return predictability is now established as a fact. Campbell and Shiller (1988), Fama and

French (1988), and Lamont (1998) and Rangvid (2005) document stock return predictability using either

dividends, earnings or GDP, scaled by prices. Campbell (1987), Fama and French (1989), Hodrick (1992),

and Keim and Stambaugh (1986) show that stock returns are predictable using interest rate variables.

Lettau and Ludvigson (2001) show that aggregate consumption, asset holdings, and labor income share

a common trend, but may deviate substantially from one another in the short term, yielding stock

return predictability. Cooper and Priestley (2009) show that the output gap can predict stock returns at

business cycle frequencies. Santos and Veronesi (2006), Piazzesi, Schneider and Tuzel (2006), and Lustig

and Van Nieuwerburgh (2006) develop models where either labor income or housing wealth variables can

predict stock returns.
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cross section of stock returns. However, the empirical evidence suggests that discount

rate variation is different in the short-run and in the long-run. Figure 1 provides a simple

means to understand this. Motivated by Cochrane (2011), we plot the actual returns

and fitted values from a regression of returns on lagged values of Lettau and Ludvigson’s

(2001) consumption-wealth ratio, cay, and the log dividend price ratio, dp, using one-

quarter, ten-year, fifteen-year, and twenty-year returns. Up to the five-year horizon, cay

dominates the return forecast and compared to forecasts based on dp, adds volatility to

predicted returns. By contrast, at longer horizons cay loses its forecasting power whereas

dp gains in importance and the volatility of stock return becomes lower. This suggests a

term structure of discount rates where there are more volatile business cycle variations

in discount rates at short horizons and smoother variations in the long term trend of

discount rates.

What are the pricing implications of this pattern in discount rate variation? The

ICAPM assumes long term investors and implies that any component of the term struc-

ture of discount rates will have the same price of risk.2 However, if investors have het-

erogenous investment horizons then the marginal investor is not a Merton’s ICAPM long

term investor. If investors care about discount rate changes at different horizons, then

revisions in forecasts of both future short term and long term returns would be priced

differently. Both short term discount rate shocks and long term discount rate shocks

lead to a fall in stock prices. This fall in prices is compensated by a rise in expected

market returns. While short term discount rate shocks lead to an expected quick re-

covery of prices, long term discount rate shocks might be perceived as riskier by short

term investors, because prices are expected to rise only in the long term, beyond their

investment horizon. Thus, the presence of short term investors implies that exposure to

2Campbell and Vuolteenaho (2004) note that Merton’s (1973) intertemporal CAPM (ICAPM) sug-
gests that the price of risk of both short term discount rates and long term discount rates should equal
the variance of the market return, while the price of risk of cash flows should be γ times larger, where γ
is the investor’s relative risk aversion.

4



long term discount rate shocks should be compensated by a larger risk premium than

exposure to short term discount rate shocks.

Recent evidence uncovered by Betermier, Calvet, and Soldini (2017) supports our

conjecture that short term investors demand a larger compensation for exposure to long

term discount rate fluctuations. Specifically, these authors present evidence that over the

life-cycle households climb the "value ladder". That is, they gradually shift from growth

stocks (with long duration) to value stocks (with short duration) as their investment

horizon shortens. Being assets with long duration, growth stocks are more sensitive to

discount rate shocks. Thus, short term investors appear to be more averse to exposure

to discount rate shocks because these investors do not benefit from the improvement in

investment opportunities driven by (especially long term) discount rate shcoks.

The different pricing implications of discount rate variations at different horizons gives

rise to a three factors in the cross section of expected excess returns: a short run discount

rate news factor, a long run discount rate news factor, and a cash flow news factor. This

paper’s contribution is twofold. First, as its main contribution, the paper investigates

empirically if discount rate variation at different horizons is a source of different prices of

risk. Second, the paper examines the implications of the cross sectional findings for the

term structure of ’zero coupon’equity, namely dividend strips. That is, we investigate

and confirm that our evidence of different prices of risk for short term discount rates news

and long term discount rate news can be theoretically reconciled with recent evidence of a

downward sloping term structure of ’zero coupon’equity ((Giglio, Maggiori, and Stroebel

(2015), Binsbergen and Koijen (2012, 2017), Weber (2017)).

The paper’s main findings can be summarized as follows. There are two separate

sources of discount rate risk that emanate from short term return predictability and long

term return predictability. Both discount rate news components derived from a VAR

for stock returns that picks out these two effects separately are important in describing
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the cross section of stock returns. We find that news about long term discount rates

commands a price of risk of 5.1% per annum which is economically and statistically

greater than the price of risk associated with short term discount rate news. The latter is

rewarded with a premium of approximately 3% per annum. The estimated risk premium

attached to cash flow news is 5.7% per annum. Our findings imply that the "good beta"

of Campbel and Vuolteenaho (2004) is "better", that is, it entails a lower risk premium,

when it is a beta with respect to short term discount rate shocks.

Using data from derivatives markets to recover the prices of dividend strips on the

aggregate stock market, van Binsbergen, Brandt, and Koijen (2012) find that short-term

dividends have a higher risk premium than long-term dividends. At first glance, our

findings might be viewed as being consistent only with an upward sloping term structure

of dividend strips and not with a downward sloping one. However, we derive and simulate

an augmented version of the risk-based model of Lettau and Wachter (2007) and find that

this is not necessarily the case. The augmented model includes shocks to dividend growth,

expected dividend growth, short term discount rates, and long term discount rates. The

model replicates our results that the price of long-term discount rate risk is higher than its

short-term counterpart. The simulations also produce a downward sloping term structure

of ’zero coupon’equity risk premia and their Sharpe ratios, consistent with the empirical

evidence in van Binsbergen, Brandt, and Koijen (2012).

The value of the market portfolio is the sum of all dividend strip values. The discount

rate shocks we identify in our empirical framework are, in essence, shocks to the expected

holding period returns on the market portfolio. It is important to note that the shocks we

identify are distinct from shocks to discount rates on dividend strips. The expected mar-

ket return is a weighted average of expected dividend strip returns. Unexpected changes

in the expected market return can therefore stem from shocks to the value of individual

strips, which themselves are caused by either changes in the expected dividends, or by
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changes in the discount rates on strips. For example, a positive shock to the two-year

holding period return on the market could be a consequence of a positive shock to the

one-year strip discount rate but also to the two-year strip expected return, the three-year

strip and so on. Thus, our findings that the price of risk of shocks to long term market

discount rates is higher than that of short term market discount rates is consistent with

any shape of the term structure of dividend strips, and in particular with a downward

slopingt term structure, as our simulations also show.

Interestingly, our main result, namely that shocks to long term discount rates com-

mand a higher risk premium than shocks to short term discount rates does not imply an

upward sloping term structure of expected holding period returns for the market portfolio

either. This is evident in our model simulation which produce a rather flat term structure

of the market’s holding period returns.

Our empirical findings are reinforced when we sort stocks into portfolios based on

their exposures to different types of news. For example, the average return differential

between the 5th (high exposure) and the 1st (low exposure) quintiles of stocks sorted on

exposure to longer term discount rate news is about 4.4% and the corresponding number

for short term discount rate news is close to 3% in annual terms. Double sorting portfolios

by their exposure to short and long term discount rate risk confirms that exposure to

long term discount rate risk is associated with higher expected returns than exposure to

short term discount rate risk.

We also find that the cross sectional estimates of the prices of risk differ across size

and book to market samples. The price of risk of both discount rate news components is

high for small and high book to market firms, and low for large and low book to market

firms. Within each category of stocks sorted on their characteristics, we find a pervasive

long term discount rate price of risk which is economically and statistically higher than

its short term counterpart. Interestingly, we find a particularly strong relation between
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firm size and short term discount rate risk. While the price of risk associated with short

term discount rate news is greater for the lowest market equity firm quintile than it is in

the cross section of all stocks, it is typically statistically indistinguishable from zero for

the other market equity firm quintiles. Our results hence suggest that the price of risk

associated with short term discount rate news is mostly due to small firms in the sample.

This result is consistent with the findings of Perez-Quiros and Timmermann (2000) who

show that small firms are more sensitive to credit market conditions in recessions, that

is, at business cycle frequencies, when discount rates are high. In contrast, exposure to

long run discount rate shocks is priced across all size quintiles.

The economic magnitude of different news components can be judged according to

their expected return contributions. These are obtained by multiplying the risk premium

for each factor with the appropriate beta. We find that each of the three factors has

a positive and statistically significant return contribution. Similar to the patterns we

observe in the risk premia, the long term discount rate news has a higher expected return

contribution than the short term discount rate news. This pattern becomes more evident

when we consider portfolios of stocks sorted on their characteristics. The impact of the

long term discount rate factor is higher than that of the short term discount rate factor

in each size and book to market equity quintile apart from the 1st (lowest) market equity

and 5th (highest) book-to-market equity quintiles of stocks. This indicates that small

and value firms have smaller sensitivity to long term discount rate news as opposed to

short term discount rate news. In this vein, Lettau and Wachter (2007) show that firms

with cash flows weighted more to the present have a low ratio of price to fundamentals

and high expected returns relative to firms with cash flows weighted more to the future.

Since discount rates are not observable, we draw on recent popular studies and employ

a VAR approach to model the empirical proxies for long term and short term news.3

3Well known examples include Campbell (1991), Campbell and Ammer (1993), Campbell and Mei
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Despite its numerous advantages and intuitive appeal, this approach may be sensitive to

the choice of sample periods or predictive variables (Chen and Zhao (2009)). We address

this concern in a battery of robustness checks and consider nine alternative combinations

of various state variables, employ alternative news estimation methods, and examine

different sub samples. We find that our results are consistent and remain generally

upheld.

The literature has thus far, to the best of our knowledge, ignored the asset pricing

implications of the empirical fact that stock returns are predictable at short and long

horizons with different variables, suggesting a term structure in discount rates. We exploit

this in order to show that there are two discount rate factors and one cash flow factor

driving the cross section of stock returns. A thorough understanding of discount rate

behavior is important to connect the findings that stock returns are predictable at short

and long horizons with risk factors that describe the cross section of returns. Our findings

provide new insights into discount rate variation and its impact on asset prices.

In a related paper to ours Weber (2016) creates a firm-level cash flow duration mea-

sure using the balance sheet, and finds that stocks with a high cash flow duration earn

substantially lower average returns than stocks with short cash flow duration, especially

following periods of high investor sentiment. Weber’s methodology is very different from

ours as we look at shocks to the expected market returns and test the prices of risk of

these shocks. As we explain above, our findings do not imply any particular shape for

the term structure of dividend strips.

The remainder of the paper is organized as follows. To motivate our analysis, Section

2 shows that there are different variables which predict returns at short horizons and at

long horizons. Section 3 outlines the methodology to extract short-term and long-term

(1993), Campbell (1996), Campbell and Vuolteenaho (2004), Campbell, Giglio, and Polk (2013), Camp-

bell, Giglio, Polk, and Turley (2017), and Petkova (2006) among others.
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discount-rate news components. Section 4 describes the data. Section 5 discusses our

empirical findings, Section 6 contains a brief overview of the robustness checks. Section

7 briefly describes the dynamic risk-based model, and provides the simulative results.

Section 8 concludes.

2 Short-Term and Long-Term Return Predictors

In this section, we examine the predictive power of two theoretically motivated economy-

wide instruments, namely the log dividend price ratio, dp, and the consumption-wealth

ratio, cay. We first outline the theoretical underpinning for the forecasting power of these

two variables. Then we examine empirically their forecasting power for US equity stock

returns over the period from 1952 to 2013.

2.1 Theoretical Motivation

The theoretical rationale for the predictive ability of dividend yields dates back to the late

1980s. Using a first-order Taylor expansion, Campbell and Shiller (1988) approximate the

log one-period return, rt = ln (Pt+1 +Dt+1)− ln (Pt), where Pt is the price, and Dt is the

dividend, around the mean log dividend-price ratio,
(
dt − pt

)
, to show that log returns can

be approximated as rt ≈ k+ρpt+1 +(1−ρ)dt+1−pt, where ρ and k are parameters in the

linearization defined by ρ ≡ 1/
(
1 + exp

(
dt − pt

))
and k ≡ − log ρ− (1− ρ) log (1/ρ− 1)

and lowercase letters are used for logs. Solving forward this identity iteratively and

imposing a transversality condition that limj→∞ ρ
j (dt+j − pt+j) = 0, the authors manifest

that the log price-dividend ratio is determined by the expected discounted value of future

dividend growth and returns:

pt − dt ≈
k

1− ρ + Et

∞∑
j=0

ρj [∆dt+1+j − rt+1+j] , (1)
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where Et denotes a rational expectation formed at the end of period t and ∆ is a one-

period backward difference. This approximation becomes more accurate at longer hori-

zons.

Equation (1) says that the log price-dividend ratio is high when dividends are expected

to grow rapidly, or when future stock returns are expected to be low. Time variability in

dividend yields can hence be attributed to the variation in expected cash flow growth rates

or expected future risk premia. Because the dividend yield is a weak forecaster of dividend

growth, changes in dividend yield are commonly related to revisions in expectations about

future returns (Campbell (1991) and Cochrane (1992)). Campbell and Shiller (1988),

Fama and French (1988) and many others document the forecasting potential of dividend

yields for excess returns, in particular at longer horizons.4

Campbell and Mankiw (1989) apply a similar approximation to the intertemporal

budget constraint of a consumer, Wt+1 = (1 +Rt+1) (Wt − Ct), where Ct is consumption,

Wt is wealth, and Rt is a time-varying risky return. Assuming that the consumption-

wealth ratio is stationary, Campbell and Mankiw (1989) rewrite the budget constraint as

∆wt+1 ≈ κ+rt+1 +(1− 1/δ) (ct − wt), where δ is the steady-state ratio of new investment

to total wealth, (W − C) /W , and κ is a constant. By solving this difference equation

forward, the following expression for the log consumption-wealth ratio obtains:

ct − wt ≈ Et

∞∑
j=1

δj (rt+j −∆ct+j) +
δκ

1− δ . (2)

This equation highlights the forward-looking nature of the consumption-wealth ratio by

4Keim and Stambaugh (1986), Fama and French (1988) and Goyal and Welch (2003) among others

find that aggregate dividend yields strongly predict equity and bond returns. Ang and Bekaert (2007)

warn, however, that the statistical evidence for return predictability can depend critically on the choice

of standard errors and show that the predictive ability of the dividend yield is considerably enhanced in

bivaraite regressions with the short rate.
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relating it to future expected returns on aggregate wealth (or on the market portfolio)

and consumption growth rates.

Despite its theoretical purity, the formulation in equation (2) is not straightforward to

apply in the empirical sense because aggregate wealth and human wealth, in particular,

cannot be directly observed. Lettau and Ludvigson (2001) overcome this obstacle by

linking the stock of human wealth to labor income. They show that consumption, asset

wealth and labour income share a common trend, but may deviate from each other

in the short run. The residual from a cointegrating relation between these variables

labelled as cay, captures the predictive component for future returns. The economic

intuition is simple. When future returns are expected to be high, investors who wish

to maintain smooth consumption intertemporally will increase their consumption out of

current wealth and labour income, which will shift the level of consumption above its

common trend with the wealth components. Lettau and Ludvigson (2001) show that cay

is a strong predictor of both real stock returns and excess returns over a Treasury bill

rate. Specifically, cay outperforms the dividend yield, the dividend payout ratio, and

several other popular forecasting variables at short and intermediate horizons.

2.2 Predictive Regressions

Previous work indicates that cay captures short-term discount rate movements and has

explanatory power for short-horizon returns, but very little for long-term returns and long-

term dividend growth (Lettau and Ludvigson (2005)). Cochrane (2011) conjectures that

cay helps predict one-year returns without much changing long-term expected returns, if

it has an offsetting effect on returns with horizons longer than one-year. Cochrane (2011)

also shows that shocks to cay bring about a shift in expected returns from the distant

future to the near term and labels it the shift to the term structure of risk premia.

In contrast to cay, the dividend-price ratio dp, matches expected long-horizon returns
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very well (Cochrane, 2011). It captures the long-term movement in equity returns, driven

possibly by innovations in technology or demographic changes (see, for example, Lochester

(2009) and Favero, Gozluklu, and Tamoni (2011)).

As formalized in equation (1), the dividend-price ratio is interpreted as reflecting

the outlook for dividends and/or the rate at which future dividends are discounted to

today’s price. Changes in dp forecast significant persistent changes in expected stock

returns. Campbell, Lo, and MacKinlay (1997) emphasize that dp is a better proxy for

expectations of long-horizon returns than for expectations of short-horizon returns.

In the following, we investigate the relative predictive power of cay and dp for quarterly

returns and returns at longer horizons. We consider univariate regressions of the form

r
e,(h)
m,t+1 = a

(h)
0 + a

(h)
1 × cayt + ε

(h)
t+1 (3)

and

r
e,(h)
m,t+1 = b

(h)
0 + b

(h)
1 × dpt + ε

(h)
t+1. (4)

In equations (3) and (4), re,(h)
m,t+1 denotes the log excess return on the value-weighted CRSP

index over the risk-free rate at time t + 1 over a horizon of h quarters, a(h)
1 and b(h)

1 are

h horizon slope coeffi cients, and a(h)
0 and b(h)

0 are the respective intercepts.

Table 1 summarizes the results of long-horizon predictive regressions. For each time

horizon, the table reports the regression coeffi cients along with their Hansen-Hodrick

(1980) corrected t-statistics in parentheses. Our estimates in Column I of Table 1 illus-

trate that cay is a strong predictor of future market returns at short and medium term

horizons. First, the forecasting power of cay is pronounced already for quarterly returns

as indicated by the first row in Column I: Variation in the consumption-wealth ratio

explains roughly 1.30% of changes in future market returns with a t-statistic of 2.01.

As the horizon increases, the predictive ability of cay improves both in economic and
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statistical terms. The coeffi cient of cay increases from 0.62 for quarterly returns to 6.79

for five-year returns and reaches its maximum at horizons of between five and six years.

This increase in predictive power is associated with a rise in the adjusted R2 statistic.

Second, although cay has a dramatic effect on short- to medium-term return forecasts,

its predictive power diminishes for longer horizon returns. The coeffi cients in Column

I become smaller for horizons beyond five years, and there are similar patterns in the

t-values and the measures of fit. At horizons of about 20 years, the coeffi cient in the

predictive regression in equation (3) becomes economically and statistically close to zero.

Furthermore, the point estimates go the "wrong" way for longer period returns of more

than 20 years. Then high consumption-wealth ratio signals low returns, in contrast to

the theoretical prediction.

Column II of Table 1 presents the results of predictive regressions with the dividend-

price ratio. At the quarterly horizon, dp captures less variation in expected returns

than cay, and its statistical significance is low with a t-ratio of 1.59. The forecasting

potential of the dividend-price ratio becomes more pronounced at longer horizons. The

slope coeffi cients and adjusted R2s rise with the horizons and the predictive power of dp

persists also for holding period returns of more than 20 years. This result is in stark

contrast to the evidence reported for cay whose forecasting power diminishes after five

years. For example, cay explains up to 22% of the variation in future returns at short-

and medium-term horizons whereas dp can capture up to 50% of changes in expected

stock returns at horizons of about 18-20 years. Comparing these univariate forecasting

regressions, cay tends to outperform dp at short horizons, they have similar forecasting

power at medium-term horizons, and dp outperforms cay in the long horizon regressions.5

The different roles of cay and dp in forecasting stock returns are captured in Fig-

5We find similar evidence in forecasts based on bivariate regressions with cay and dp (unreported).

The adjusted R2s increase from slightly more than 2% for quarterly returns to close to 55% at horizons

of about 15 years, and stagnate in the range of 40-50% for longer-term returns.
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ure 1 which plots the actual and fitted excess returns for 1-, 40-, 60-, and 80-quarter

horizons, respectively. The forecasting power of cay and dp is different in the following

respects: cay helps to forecast business cycle frequency "wiggles", but has no effect on

the "trend", similar to evidence reported in Cochrane (2011). This kind of predictive

power of cay persists up to the horizon of five to six years. However, when the horizon is

prolonged, the difference between cay and dp in terms of their predictive power becomes

pronounced even stronger. At horizons of beyond 15 years, cay has virtually a zero ef-

fect on return forecasts. Over 15-year horizons and longer, adding cay does not improve

the predictability relative to that based on dp alone. Based on unreported results, the

fitted returns generated by univariate dp forecasts and bivariate forecasts with cay and

dp, merely overlap.

The empirical evidence in this section provides us with a yardstick to correctly capture

short-term and long-term variation in future expected market returns. In the following,

we examine the impact of the time-varying structure of market discount rates on risk

premia in the stock market.

3 Cash-Flow, Short-Term and Long-Term Discount-

Rate Risks

3.1 Permanent and Transitory Return Components

A simple present value formula states that changes in asset prices should be associated

with changes in expectations of future cash flows, time-varying discount rates, or both

(Campbell and Shiller (1988)). Elaborating on this insight, Campbell (1991) shows that

the unexpected market return can be decomposed into news about future dividend growth

(cash flows) and news about future returns (discount rates):
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rm,t+1 − Etrm,t+1 ≈ (Et+1 − Et)
∞∑
j=0

ρj∆dt+1+j − (Et+1 − Et)
∞∑
j=1

ρjrm,t+1+j

≡ ηcf,t+1 − ηdr,t+1, (5)

where the term ηcf,t+1 denotes news about future cash flows, i.e. revisions in expectations

about future dividend growth, and the term ηdr,t+1 denotes news about future discount

rates, i.e. revisions in expectations about future returns. As argued by Campbell and

Vuolteenaho (2004), these two components can be interpreted approximately as perma-

nent and transitory shocks to wealth. Returns generated by cash flow news are associated

with a capital gain/loss and are not reversed. By contrast, returns generated by discount

rate news are offset in the future because a rise in discount rates leads to a capital loss

and vice versa. Therefore, a conservative long-term investor is generally more adverse

to cash-flow risk exposure than to risk stemming from unexpected changes in discount

rates.

Campbell (1991) suggests using a vector autoregressive (VAR) model to measure cash

flow and discount rate news in the data. Empirically, this approach implies that we

first estimate the terms Etrm,t+1 and (Et+1 − Et)
∑∞

j=1 ρ
jrm,t+1+j and then use the actual

return realizations to back out the cash flow news in equation (5).

In our analysis, we follow Campbell and Vuolteenaho (2004) and assume that the data

are generated by a first-order vector autoregressive (VAR) model

zt+1= a + Γzt+ut+1 (6)

where zt+1 is a m-by-1 state vector with rt+1 as its first element, a and Γ are m-by-1

vector andm-by-m companion matrix of constant parameters, and ut+1 is an i.i.d. m-by-1
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vector of shocks.6

Given the process in (6), the discount-rate news can be written as

ηdr,t+1 = e1′ρΓΦut+1, (7)

where Φ ≡ (I− ρΓ)−1, and e1 denotes an m-by-1 vector whose first element is unity and

the remaining elements are all zero. e1′ρΓΦ captures the long-run significance of each

individual VAR shock to expected returns. The greater the absolute value of a variable’s

coeffi cient in the return predictive regression, i.e. the first row of Γ, the greater the weight

of this variable in the discount-rate news formula. Furthermore, the term Φ guarantees

that more persistent variables receive more weight.

The cash-flow news can be backed out as a residual:

ηcf,t+1 = (e1′ + e1′ρΓΦ) ut+1. (8)

The VAR approach has three main advantages. First, as noted by Campbell (1996) it

links the vast time-series literature on predictability to the cross-sectional literature. Sec-

ond, one does not necessarily need to understand short-term dynamics of dividends which

are notoriously diffi cult to predict. Third, this approach yields results that are almost

identical to those derived from forecasting cash flows directly based on the same informa-

tion set and provided that the dividend yield is included in the set of state variables and

the VAR generates reliable return forecasts (Engsted, Pedersen, and Tanggaard (2012)

and Campbell, Giglio, and Polk (2013)).

6As discussed by Campbell and Shiller (1988), the assumption that the VAR is first-order is not

restrictive, since this formulation allows for higher-order models by stacking lagged values into the state

vector.
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3.2 The Intertemporal CAPM

Assuming an infinitely lived investor with recursive preferences proposed by Epstein and

Zin (1989, 1991), Campbell (1993) derives an approximate discrete-time version of Mer-

ton’s (1973) ICAPM. The model’s central pricing relation is based on a first-order Euler

equation that relies on time preference parameter δ and distinguishes between the coeffi -

cient of relative risk aversion γ and the elasticity of intertemporal substitution (EIS) ϕ.

When asset returns and consumption growth are jointly conditionally homoscedastic and

lognormally distributed, consumption can be substituted out from the budget constraint,

and risk premia can be approximated as a function of the coeffi cient of relative risk aver-

sion and a discount coeffi cient ρ. This approximation is suffi ciently accurate if ϕ = 1,

ρ = δ and the optimal consumption-wealth ratio is conveniently constant. Assuming

further that a well-diversified market portfolio is a good proxy for the optimal portfolio

of a long-horizon investor, the risk premium on any asset i satisfies

Et(ri,t+1)− rft+1 +
σ2
i,t

2
= γCovt(ri,t+1, rm,t+1 − Et(rm,t+1)) + (1− γ)Covt(ri,t+1,−ηdr,t+1),

(9)

where rf is the risk-free rate, σ2
i denotes the asset’s variance, i.e. the Jensen’s inequality

effect, and ηdr is the same as above. In the case of γ = 1, equation (9) reduces to the

static CAPM framework.

Using simple expected returns, Et
(
Ri,t+1 −Rf

t+1

)
, instead of log returns, Et(ri,t+1)−

rft+1 +
σ2i,t
2
, and exploiting the approximation in equation (5), Campbell and Vuolteenaho

(2004) show that asset returns can be related to two fundamental sources of risk captured

by permanent and transitory news components. In unconditional terms, the expected risk

premium on asset i obeys

E [Re
i ] = γσ2

mβi,cf + σ2
mβi,dr, (10)
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where E [Re
i ] denotes the average excess return on stock i in excess of the risk-free rate

and σ2
m is the variance of the market portfolio. Here the cash-flow beta is defined as:

βi,cf ≡
Cov

(
ηcf,t+1, R

e
i,t+1

)
V ar

(
ηm,t+1

) (11)

and the discount-rate beta as:

βi,dr ≡
Cov

(
−ηdr,t+1, R

e
i,t+1

)
V ar

(
ηm,t+1

) . (12)

Both betas add up to the traditional market beta measured as:

βi,m ≡
Cov

(
ηm,t+1, R

e
i,t+1

)
V ar

(
ηm,t+1

) , (13)

where ηm,t+1 = rm,t+1 − Et(rm,t+1) = ηcf,t+1 − ηdr,t+1 denotes the unexpected market

return at time t + 1. Note that sensitivities in (11) and (12) are defined as rescaled

slope coeffi cients following Campbell and Mei (1993). Furthermore, the discount-rate

beta is defined as the sensitivity of an asset’s return to the good news about the market,

i.e. lower-than-expected discount rates, such that we expect a positive premium as a

compensation for high beta.

3.3 Two Discount Rate News Components

Motivated by the evidence presented in Section 2, we further decompose the total discount

rate news into news about future long-term discount rates and news about future short-

term discount rates:

ηdr,t+1 = ηldr,t+1 + ηsdr,t+1. (14)

19



We base the distinction between these two discount rate news components on a thresh-

old horizon h. We measure the long-term news component, defined as a sum of future

unexpected returns from the horizon h up to infinity, as:7

ηldr,t+1 = e1′ρhΓhΦut+1. (15)

and retrieve the short-term discount-rate news, defined as a sum of future unexpected

returns from now up to the horizon h− 1, residually:

ηsdr,t+1 = e1′
(
ρΓ− ρhΓh

)
Φut+1. (16)

Note that this formulation reduces to a two-beta ICAPM for h equal to unity. Our

baseline empirical findings are reported for h equal to one year or four quarters.8

We define the asset’s long-term discount-rate beta by its sensitivity to the long-term

discount rate news:

βi,ldr ≡
Cov

(
−ηldr,t+1, R

e
i,t+1

)
V ar

(
ηm,t+1

) , (17)

and the asset’s short-term discount rate beta by its sensitivity to the short-term discount

rate news:

βi,sdr ≡
Cov

(
−ηsdr,t+1, R

e
i,t+1

)
V ar

(
ηm,t+1

) . (18)

Clearly, these two beta components add up to the discount rate beta, βi,dr = βi,ldr+βi,sdr

as in Campbell and Vuolteenaho (2004). Furthermore, the overall market beta can then

be written as βi,m = βi,cf + βi,ldr + βi,sdr.

The distinction between these two discount rate beta components raises the possibility

that discount rate risks can have different cross sectional implications at short term and

7Chen and Zhao (2009) implement an analogous approach to study fixed-term maturity bonds.
8In the Appendix, we show that none of our conclusions are affected by this choice. Our results

remain upheld for alternative values of h.
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at long term horizons. High expected returns associated with high discount rate betas

can thus be attributed to high long term discount rate betas, high short term discount

rate betas, or both. Our analysis in Section 5 addresses this issue empirically.

4 Data

In order to implement the beta decomposition, we need to construct empirical proxies

for news about cash flows and discount rates. Since these news components are not

observable, the traditional approach is to predict them from observable state variables.

In the next section, we describe the state variables used in the estimation of the VAR.

4.1 State Variables Choice

To operationalize the VAR approach, we need to specify the variables in the state vector.

We opt for a parsimonious system with five state variables: the log excess market return

measured by the excess log return on the CRSP value-weight index; the log dividend-price

ratio on the S&P 500 index9 (dp); the log consumption-wealth ratio (cay) of Lettau and

Ludvigson (2001); the short-term interest rate, measured by the one-month Treasury bill

rate in percent; and the default yield spread, measured as the yield difference between

BAA and AAA Moody’s corporate bonds in percentage points. The data on the excess

market return and the short term rate are available on the website of Ken French. The

series for the aggregate consumption-wealth ratio is provided by Martin Lettau, while

the data for default spread are obtained from the Federal Reserve Bank of St. Louis.

We estimate the VAR over the longest available sample period spanning from 1952Q1 to

2013Q3, restricted by the availability of cay series.

In general, the implementation of the return decomposition framework requires the

9Online data is available on http://www.econ.yale.edu/~shiller/data.htm.
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excess equity market return as a necessary component of the state vector. The other

variables are optional. Our choice of dp and cay is motivated by theoretical reasons

and their return forecasting ability (see also, Section 2). We include these variables in

the system because they are important determinants of future stock returns and capture

the time-varying dynamics of returns over different time horizons. In particular, we

include dp in the system following Campbell, Polk, and Vuolteenaho (2010) and Engsted,

Pedersen, and Tanggaard (2012) who emphasize that for the equity return decomposition

in equation (5) to be valid, the dividend yield is indispensable. In addition, we consider

the consumption-wealth ratio since this variable is a better forecaster of future returns at

short and intermediate horizons than is the dividend yield and several other traditionally

used variables (e.g. Lettau and Ludvigson (2001)). Next, there are two reasons to

include the short-term interest rate in the VAR: First, previous studies document a

strong predictive ability of the short rate for future excess returns (see, for instance,

Fama and Schwert (1977) and Shiller and Beltratti (1992)). Secondly, in line with Ang

and Bekaert (2007) we find that the forecasting potential of the dividend yield and the

overall significance of the return predictive regression are considerably enhanced upon

the inclusion of the short rate in a set of regressors. Finally, the default spread is an

important state variable in the ICAPM because it contains information about future

corporate profits and it helps describe time-variation in the investment opportunity set

faced by investors (e.g. Fama and French (1989) and Campbell, Giglio, and Polk (2013)).

4.2 VAR Parameter Estimates

Table 2 reports the benchmark characteristics of the first-order VAR model including

the log excess market return, the log dividend-price ratio, the log consumption-wealth

ratio, the short-term rate, and the default spread. The VAR is estimated using OLS
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and employing ρ = 0.951/4 for quarterly data.10 Each row of Table 2 corresponds to a

different dependent variable listed in the header of the row. The first five columns give

coeffi cients on the explanatory variables listed in the column header; the last column

gives the adjusted R
2
statistics. In parentheses are two t-statistics for each coeffi cient

estimate. OLS t-statistics are reported in the upper row; Newey-West (1987) t-statistics

are reported in the bottom row.

The first row shows the stock market return forecasting equation when lags of returns,

price-dividend ratio, consumption-wealth ratio, short-term rate, and default spread are

applied as regressors. The R
2
statistic for the return equation is 7.11% over the full

sample. According to unadjusted OLS t-statistics, all forecasting variables except for the

lagged market return contain significant information about expected stock returns. In

line with previous findings, the dividend yield and consumption-wealth ratio positively

predict the market returns with t-statistics of 2.69 and 3.06, respectively. Higher past

short-term rates are associated with lower returns similar to Ang and Bekaert (2007).

The coeffi cient on the default spread is positive and statistically significant. Fama and

French (1989) document similar evidence and argue that default spread tracks business

cycle conditions closely. Taking into account the serial correlation and heteroskedasticity

has no strong impact on standard errors for the variables in the system apart from the

default spread.

The remaining rows provide evidence of strong interaction between the state variables.

The autoregressive coeffi cients of the dividend yield, consumption-wealth ratio, and short

term rate are all very close to unity, but they can be all explained to some extent by the

other variables in the system. For example, past returns, past consumption-wealth ratio

realizations, and past short term rate are strong predictors of future dividend yields. The

short term rate and the default spread forecast next period changes in the cay residual.

10The results do not alter qualitatively for other plausible linearization parameter values.
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Lagged default spread is a significant determinant of current short term rate, while the

past short term rate is important in forecasting the default spread. The forecasting

power of the VAR system is relatively high with R2s varying from 87.38% in the cay

forecasting regression to 96.77% in the predictive regression for dp. High persistence in

the data might be a challenge to correct statistical inference and coeffi cient interpretation.

However, advocates of stock return predictability argue that expected returns contain

a slow-moving time-varying component whose persistence implies that the predicting

variables should be persistent as well.11

Using the VAR to calculate cash flow news produces a series which is almost unrelated

to discount rate news. For example, the long-term discount rate news has a correlation of

-0.08 with the cash-flow news, while the short-term discount rate news covaries positively

with unexpected cash flow changes with a correlation of 0.09. Short-term and long-term

discount rate news are negatively related with correlation of -0.53.

4.3 Individual Stocks as Test Assets

In asset pricing tests, stocks are often grouped into portfolios to mitigate the errors-in-

variables bias caused by the estimation of betas. However, Ahn, Conrad, and Dittmar

(2009), and Lewellen, Nagel, and Shanken (2010) note that the particular method of port-

folio grouping can have a dramatic impact on the results. To avoid these problems, several

recent studies employ a universe of individual stocks as test assets in cross-sectional re-

11The appendix to Campbell and Vuolteenaho (2004) shows that persistence in the data is a priori

unlikely to affect the performance of the ICAPM. In our case, the Kendall (1954) bias reduces the vari-

ability of discount rates and bias correction would most likely strengthen the significance of discount rate

news terms. Furthermore, there are negligible correlations between return innovations and innovations in

cay, i, and def of the order of -0.15, which imply a restrained Stambaugh (1999) bias for these variables.

The upward bias in the return forecasting regression on the dividend yield works against the Kendall

(1954) bias with unclear total outcome.
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gressions. For instance, Ang, Liu, and Schwarz (2010) advocate the use of individual

stocks in cross sectional tests of asset pricing models on statistical grounds. They show

analytically and empirically that creating portfolios diminishes dispersion in betas and

generates larger standard errors in cross-sectional risk premium estimates (see also the

discussions in Avramov and Chordia, 2006, and Boons, 2016).

Litzenberger and Ramaswamy (1979), and Ang, Liu, and Schwarz (2010) emphasize

that creating portfolios destroys information contained in the cross-section of betas and

results in effi ciency losses in the estimation of risk premia. This turns out to be a relevant

empirical case for our three-fold beta decomposition because the use of portfolios produces

a high degree of multicollinearity in cross-sectional regressions similar to the evidence

reported in Botshekan, Kraeussl, and Lucas (2012). The cross sectional tests presented

below are therefore based on individual common stocks with share codes 10 or 11 traded

on the NYSE, AMEX, and NASDAQ exchanges over the period 1963Q3-2013Q3 from

the Center of Research for Security Prices (CRSP) database in Wharton Research Data

Services (WRDS) for which Compustat data on book equity is available.

We measure market equity (ME) as the total market capitalization at the firm level,

i.e. stock price times shares outstanding. Balance sheet data is obtained from the annual

Compustat database. We define book equity (BE) as stockholders’common equity plus

balance-sheet deferred taxes and investment tax credit (if available) minus the book value

of preferred stock. Based on availability, we use the redemption value, liquidation value

or par value (in that order) for the book value of preferred stock. Book-to-market equity

(BE/ME) is then book common equity for the fiscal year ending in calendar year t-1

divided by market equity at the end of December of t-1.
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5 Empirical Findings

5.1 Baseline Risk Premium Estimates

To obtain the empirical estimates of risk premia associated with long-term and short-term

discount rate news, we run cross-sectional regressions of individual stock excess returns

on betas defined in Section 3. To form a basis for comparison, we first consider a standard

single-beta CAPM:

E [Re
i ] = λ0 + λmβi,m, (19)

and a two-beta ICAPM variant introduced by Campbell and Vuolteenaho (2004):

E [Re
i ] = λ0 + λcfβi,cf + λdrβi,dr. (20)

We evaluate the ability of short-term and long-term discount rate risks to capture

the cross-section of stock returns by estimating a simple three-beta empirical ICAPM

representation which distinguishes between short-term and long-term discount rate risks:

E [Re
i ] = λ0 + λcfβi,cf + λldrβi,ldr + λsdrβi,sdr. (21)

In representations (19)-(21), λ0 is the intercept and λj is the price of risk factor j.

Table 3 presents our baseline cross-sectional estimates of prices of risk in percent per

annum. For each model, we compute time-varying risk loadings recursively in 40-quarter

overlapping rolling time-series estimation windows following definitions (11)-(13), (17)

and (18). We then run recursive cross-sectional regressions of average returns in each

estimation window on the betas computed over the same rolling window. In this way,

we can compute a time series of estimated risk premia corresponding to the time-varying

betas. We use heteroskedasticity and autocorrelation consistent (HAC) t-statistics of

Newey and West (1987) to test if the time-series mean of the price of risk is significantly
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different from zero.

We follow Botshekan, Kraeussl, and Lucas (2012) and Boguth and Kuehn (2013) and

work with overlapping time-series windows of the length of ten years. A ten-year horizon

gives a reasonable total number of estimation windows, while maintaining a suffi ciently

large number of observations within each window to compute reliable estimates of betas.

There are 162 overlapping estimation windows in total. The first window covers the period

1963Q3-1973Q2, while the last window corresponds to the 2003Q4-2013Q3 period. We

exclude stocks with one or more missing data points in a specific estimation window from

the cross-sectional regression for that window. Furthermore, to ensure that our results

are not driven by extreme outliers, we follow Botshekan, Kraeussl, and Lucas (2012) and

winsorize returns in each estimation window at the 1% and 99% levels.

Column I of Table 3 shows that the standard market beta carries a positive and

statistically significant price of risk of about 4.5% annually. The estimate of the associated

constant term is 6.24% per annum. For comparison, Lewellen, Nagel, and Shanken (2010)

report estimates of the zero-beta rate between 6.8% and 14.32% in annual terms for a

number of asset pricing models which are often applied in empirical work.

In column II of Table 3, we break the total market beta into cash-flow and discount-

rate components. Both sources of risk are associated with statistically significant and

positive prices of risk of 5.92% and 3.58% per annum respectively. Therefore, in line with

the prediction of Merton’s (1973) ICAPM and the empirical analysis in Campbell and

Vuolteenaho (2004), our estimates indicate that sensitivity to the long-lived permanent

shock through cash flow news is rewarded with a higher price of risk than sensitivity

to the short-lived shock to discount rates. The row "Diff." reports results of a t-test

for differences in estimated cash-flow and discount-rate risk premia. It shows that the

discount-rate price of risk is 2.34 percentage points lower than the cash-flow price of risk.

This difference is significant with a t-statistic of -2.64.
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Next, Column III of Table 3 presents the results of the three-beta ICAPM which

distinguishes between short-term and long-term discount rate risks. Our estimates suggest

that all three sources of risk have explanatory power in the cross section of stock returns.

In particular, the cash-flow news is associated with the largest price of risk of 5.7% per

annum in our specification. The price of risk for long-term discount rate news of 5.07% per

annum exceeds the price of risk for short-term discount rate news of 3.03% per annum.

The difference in long-term and short-term discount rate prices of risk is statistically

different from zero and around 2.04 percentage points.

The estimates in Column IV of Table 3 suggest that the three-factor model of Fama

and French (1993) is not a particularly well suited tool to describe returns on individual

stocks. The market risk premium is estimated with a large standard error and the estimate

of risk premium for HML is negative. Ang, Liu, and Schwarz (2010) and Jegadeesh and

Noh (2013) similarly report a negative price of risk on HML.

To investigate the sensitivity of our ICAPM specifications to size and book-to-market

effects, we augment the models in Columns I-III with characteristics. The Size and Value

controls are measured by the log market capitalization and log book-to-market ratio in

the first quarter of each rolling window. For consistency, we winsorize the Size and Value

controls at the 1% and 99% levels in each window. The estimates in Columns I-A, II-A

and III-A of Table 3 suggest that the overall cross-sectional patterns are unaffected by

individual stock characteristics. There is a mild downward shift in the total market, cash-

flow, and discount rate risk premia, and an upward shift in the wedge between long-term

and short-term discount rate risk premia.

The results show that there is a distinct role for both short term and long term

discount rate news and that long term discount rate news carries a higher price of risk

than short term discount rate news. Both of these news terms command a lower price of

risk than cash flow news. In an ICAPM framework, this makes sense for a conservative
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long term investor since cash flow news has a permanent effect on stock returns. Higher

than expected short term discount rates are reversed quickly and while initially bad

news for long term investors, they are compensated by higher future returns quickly. In

contrast, bad long term discount rate news today lowers stock prices today and it takes

a long time before the higher future returns are realized. This is especially detrimental

for short term investors.

5.2 Portfolio Sorts

An alternative approach to examine the relation between estimated risk loadings and

expected returns is to group the estimates cross-sectionally and form portfolios according

to their risk exposures. If there is a cross-sectional relation between short- and long-term

discount rate risks and returns, then we should observe patterns between average realized

returns and these discount rate risks loadings. In particular, the ICAPM implies that

stocks with higher realized loadings on discount rate risks have higher average returns

over the same period. This approach has an important advantage relative to Fama-

MacBeth regressions. While the errors-in-variables problem generates biased standard

errors in the second-stage regressions, it leads here to conservative statistical inference. If

the betas are estimated with noise, the portfolio formation procedure will be somewhat

less accurate because some stocks are assigned to a wrong portfolio, which diminishes

the cross-sectional dispersion in returns across portfolios. However, since the inference

is based solely on portfolio returns, the measurement error will eventually lower the

statistical significance (see also, Boguth and Kuehn (2013)).
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5.2.1 Single Sorted Portfolios

We first sort all stocks in our sample into quintiles based on their estimated betas com-

puted following definitions (11), (17) and (18) in an independent fashion.12 For consis-

tency with the Fama-MacBeth regressions, we work with overlapping time-series windows

of the length of ten years.13

Over every ten-year period, we compute the cash-flow, short-term and long-term

discount rate risk exposures of every stock on a quarterly basis. At the beginning of each

rolling window and for each risk characteristic separately, we rank individual stocks into

quintiles based on their realized βcf , βldr and βsdr over the next ten years. The first

portfolio contains stocks with the lowest betas, whereas the fifth portfolio contains stocks

with the highest betas.

Table 4 reports various summary statistics of these portfolios. Columns "EW" and

"VW" show the average equal- and value-weighted realized returns over ten-year windows

in each portfolio. These average returns are computed over the same ten-year period as

the respective betas. Hence, Table 4 shows the relation between contemporaneous factor

loadings and returns, since a contemporaneous relation between risk measures and risk

premia is the foundation of a traditional cross-sectional risk-return trade-off (e.g. Fama

and MacBeth (1973), Ang, Chen, and Xing (2006) and references therein).

Panel A of Table 4 documents a monotonically increasing pattern between realized

average returns and realized cash-flow betas. This result is not affected by the weighting

scheme of portfolio returns. Portfolio 1 (5) has an average equal-weighted excess return

of 8.85% (14.12%) per annum. The spread in average returns between these portfolios is

5.27% per annum with a t-statistic of 6.95.14 It is interesting to note that this difference

12Our experiments with decile portfolios lead to similar evidence.
13We have experimented with using other intervals but this had no impact on our results.
14To adjust for the induced moving average effects, we report HAC t-statistics with an optimal lag

length.
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corresponds closely to the estimate of the cash flow price of 5.70% per annum in our

cross sectional regressions reported in Table 3. We observe a similar monotonic pattern

in value-weighted returns on cash flow beta sorted portfolios which yield a spread in

returns on extreme portfolios of 6.70% per annum with a t-statistic of 6.98.

Cross-sectional differences in returns might be not very surprising if the betas with

respect to a risk factor under consideration covary with other variables which are known

to explain returns. Table 4, Panel A shows that there is little evidence to support

this hypothesis in our sample. For each portfolio, we report the average market share

in percent (Mkt Share), average log market capitalization (Size), and average book-to-

market (B/M) characteristics. Portfolio 1 has on average higher market capitalization

and book-to-market ratio relative to portfolio 5, but there appears no systematic relation

between firm characteristics known to predict future returns and average returns on the

cash flow sensitivities sorted portfolios.

Table 4, Panel B shows that stocks with high contemporaneous βldr have high average

returns. An equally-weighted portfolio of stocks in the quintile with the lowest (highest)

long-term discount rate betas earns 9.39% (13.81%) per annum in excess of the risk-free

rate. Differences in returns between quintile portfolios 5 and 1 are statistically significant

and economically of the order of 4.42% per annum which is very similar to the estimated

price of long run discount rate risk of about 5.1% per annum. This pattern is more

pronounced for value-weighted portfolios with strictly monotonically increasing returns.

Stocks with high βldr must carry a premium in order to compensate investors for their

low returns in times of high long-term discount rates.

The portfolios sorted by long term discount rate news show a clearer relationship to

firm characteristics. For example, portfolio 1 with the lowest beta with respect to long

term discount rate news has a B/M ratio of 0.99, whereas portfolio 5 with the highest

long term discount rate beta has a B/M ratio of 0.84. This result reminds of Campbell
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and Vuolteenaho (2004) who document that growth stocks have higher total discount

rate betas than value stocks over the post-1963 period.

In Panel C of Table 4, we sort stocks by their realized βsdr. Our estimates show

that stocks with high βsdr have high average returns. The difference in average returns

between portfolios 5 and 1 is 3.05% per annum for equal-weighted returns and 2.95%

for value-weighted returns. These differences in returns are highly significant with robust

t-statistics of 5.08 and 3.89, respectively. Again, we notice that these return differentials

are tightly related to the estimated price of risk for assets’exposure to short term discount

rate risk documented in Table 4. In sum, the evidence in Panel C of Table 4 demonstrates

that bearing the short-term discount rate risk component is rewarded with high average

returns. There is a modest spread in the B/M ratios of the firms in the portfolios where

the low short-term discount rate beta portfolio has a B/M of 0.87 and the high short-

term discount rate beta having a B/M of 0.93. We also find that stocks with the highest

short term discount rate betas (portfolio High) tend to have lower market equity than

stocks with the lowest short term discount rate betas (portfolio Low). However, we find

no monotonic relation between firm size and exposure to short term discount rate news

here.

5.2.2 Double Sorted Portfolios

In Table 5, we report average portfolio returns of independent double sorts. First, in

each quarter, we sort stocks into terciles based on cash-flow beta, short-term discount

rate beta, and long-term discount rate beta over the next ten years independently and

compute average returns for each portfolio over the same ten-year period. Thus, we

construct three bins of stocks sorted by each risk characteristic such that the first bin

contains stocks with the lowest respective beta and the third bin contains stocks with the

highest respective beta. We then construct 3x3 portfolios which are the intersections of
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each two categories of the beta sorts.15

Panel A of Table 5 presents returns on portfolios sorted by cash-flow and long-term

discount rate betas, Panel B presents returns on portfolios sorted by cash-flow and short-

term discount rate betas, and Panel C summarizes the performance of portfolios sorted

by long-term discount rate and short-term discount rate betas. The general patterns we

observe are similar for equal-weighted and value-weighted portfolio schemes (omitted for

brevity).

The evidence presented in Panels A and B of Table 5 suggests that stocks with high

cash flow risk are systematically rewarded with higher excess returns than stocks with

high long term or short term discount rate risk. For instance, the spreads in returns on

High versus Low cash flow beta sorted portfolios vary from 4.36% to 2.68% per annum

for Low versus High long term discount rate beta stocks (Panel A) and from 4.33% to

4.34% per annum for Low versus High short term discount rate beta stocks (Panel B). The

respective spreads on High versus Low long term discount rate beta sorted portfolios vary

from 3.02% to 1.33% per annum (Panel A), and on High versus Low short term discount

rate beta sorted portfolios from 1.37% to 1.38% per annum (Panel B). These results give

further support to the Merton’s (1973) ICAPM idea that agents should receive a greater

compensation for exposure to permanent versus transitory shocks.

Moreover, our double-sorting exercise confirms that there is a higher compensation

associated with long run discount rate risk as opposed to short run discount rate risk.

This result emerges from the fact that within the same cash flow risk category, spreads

in returns on long term discount rate betas tend to exceed spreads in returns on short

term discount rate betas (Panels A and B). This intuition is reaffi rmed in double sorts

based on the two discount rate beta components: Panel C of Table 5 shows that after

controlling for short term discount rate risk, the spreads in returns on High versus Low

15Our results remain generally upheld in 5x5 double sorts (not reported).
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long term discount rate beta sorted portfolios vary from 4.37% to 3.99% per year. By

contrast, after controlling for long term discount rate risk, the spread in returns on High

versus Low short term discount rate beta sorted portfolios are lower and vary from 3.39%

to 3.01% per year.

Two conclusions can be drawn from these results. First, stocks whose returns are

more positively related to cash-flow, short-term and long-term discount rate risks earn

higher average returns, consistent with our evidence that each fundamental risk source

is rewarded with a positive risk premium. This makes sense economically, as stocks

with high betas are a risky investment for risk-averse agents who would like to hedge

against unexpected drops in the market return. In particular, our portfolio sorts tend to

show a monotonically increasing pattern for each risk characteristic along each dimension.

Differences in returns on portfolios with high versus low risk exposures are statistically

significant at the 1% level in each case. Second, cash flow risk exposure is rewarded with

the highest excess returns, while the compensation for long term discount rate risk is

greater than the compensation for the short term discount rate risk.

The results presented in Section 5.2 are consistent with the evidence from Fama-

MacBeth (1973) regressions documented in Section 5.1 in two dimensions. First, each of

our three risk factors related to cash flow, long term and short term discount rate news,

is rewarded with positive excess returns. Second, we find that fluctuations in the long

term discount rates are perceived as a more severe source of risk than fluctuations in the

short term discount rates and the former are hence rewarded with a higher premium than

the latter.

5.3 Size and Book to Market

To investigate size and book-to-market effects, we test our three-beta specification em-

ploying different cross-sectional sub-samples sorted on firms’characteristics. In Panel
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A of Table 6, we form five quintiles of stocks sorted by size. In the beginning of each

ten-year rolling window, we sort all companies in the sample based on their market cap-

italization. We follow Fama and French (1993) and use NYSE breakpoints for market

equity (ME) to allocate NYSE, Amex, and NASDAQ stocks to five groups. We then run

cross-sectional Fama-MacBeth (1973) regressions for each quintile of stocks separately.

This process is repeated recursively on a rolling window basis. In Panel B of Table 6,

we proceed analogously but form five quintiles of stocks sorted by book-to-market equity

(BE/ME).

Our estimates in Panel A of Table 6 show a clear effect of size on the estimated

premia in the three-beta model. There is a strongly pronounced drop in the cash-flow

price of risk from low market capitalization stocks to high market capitalization stocks.

The cash-flow premium declines almost monotonically from small to large stocks both in

economic and statistical terms with estimates of about 6.23% per annum for the lowest

market capitalization stocks and less than 0.1% for the highest market capitalization

stocks. This premium is not statistically significant in the fourth and fifth quintiles.

There are also large changes in the price of the discount rate news factors across firms

of different size. Within each category of companies sorted on size, we find a pervasive

long term discount rate risk premium which declines almost monotonically from small to

large companies. Sensitivity to the long term discount rate news component is rewarded

with a positive premium of 5.97% per annum among small stocks and 2.70% per annum

among large stocks. There appears also a strong relation between firm size and short

term discount rate risk. while the short term discount rate risk premium is about 3.98%

per annum for the lowest market equity firm quintile, and thus exceeds its full sample

estimate of about 3% per annum, it is statistically indistinguishable from zero for the

firms in the second, third, and fifth market equity quintiles. This evidence is consistent

with the findings of Perez-Quiros and Timmermann (2000) who show that small firms
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are stronger affected by credit market conditions in recessions, i.e. at business cycle

frequencies when discount rates are high. We find that differences in prices of long term

and short term discount rate risks range from 1.88 to 4.25 percentage points across the

five stock groups we examine and are statistically significant within each portfolio.

We also find that there is a substantial variation in the cross sectional estimates of

the prices of risk across book to market samples. Panel B of Table 6 shows that the

cash flow and long term discount rate news terms exhibit an increasing pattern from low

book-to-market to high book-to-market firms. For example, the cash flow risk premium

is 4.58% per annum for the stocks in the first bin and 8.12% per annum for the stocks in

the fifth bin. The respective return premia for the long-term discount rate risk are 4.79%

and 6.08% per annum. The relation between book-to-market and short-term discount

rate risk is generally less clearly pronounced, but stocks in the lowest book-to-market bin

are rewarded with a premium of 2.06% per annum whereas stocks in the highest book-to-

market bin are rewarded with a higher premium of 3.14% per annum. Furthermore, the

estimates in Panel B of Table 6 reinforce our main finding that there is a higher premium

attached to long term versus short term discount rate news.

In Panel C of Table 6, we report estimates of the prices of risk for all, and all but the

lowest market equity stocks, i.e. we exclude stocks in the lowest market equity quintile

from the cross section. This exercise reveals two interesting properties of the data. First,

in line with the evidence documented in Panel A of Table 6, we find that the risk premia

are higher for each of the three risk factors in the cross section of all stocks compared

to a smaller cross section of stocks which does not include small firms. Second, the

estimated price of short term discount rate risk declines by more than a half and becomes

insignificant once we take the small firms out of the sample. We find no such evidence

when we exclude other stocks from the sample. We hence conclude that the short term

discount rate risk premium is mostly due to small firms in the sample.
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This exercise reveals a considerable variation in the cross sectional estimates of the

prices of risk across size and book to market samples. The price of risk of both discount

rate news components is high for small and high book to market firms, and low for

large and low book to market firms. The longer term discount rate risk is priced most

consistently across samples, while the short-term discount rate risk premium is largely

due to low market equity firms. Finally, the long term discount rate risk premium is

economically and statistically higher than the short term discount rate risk premium

within any category of stocks we examine.

5.4 Factor Contributions

Our analysis has so far focused on the estimates of risk prices λj in the three-beta ICAPM

where j denotes the cash-flow (cf), long-term discount rate (ldr), and short-term discount

rate (sdr) risk components. The overall contributions of individual risk factors to the

total expected excess return on stock i are, however, comprised of products of these

premia and the associated risk exposures βij’s of the return on stock i. For instance, high

average returns can be associated with high prices of risk, high risk exposures or both. To

gain insight into the relative importance of factor contributions to overall risk premium in

stock markets we follow Botshekan, Kraeussl, and Lucas (2012) and perform the following

analysis. For each ten-year overlapping rolling time-series estimation window t of the

Fama-MacBeth (1973) procedure, we compute the product of the factor premium estimate

and the cross-sectional average beta over that window λjt × βjt, where the betas are

computed following definitions (11), (17) and (18) over the window t. Table 7 shows the

time-series averages of expected return contributions attributed to cash flow, long-term

discount rate and short-term discount rate risk factors in percent per annum and their

HAC t-statistics in parentheses for various sub-samples.

Panel A of Table 7 summarizes the results for the five quintiles of companies sorted
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on their market capitalization in the beginning of each rolling window. Confirming our

evidence from Table 6, we find that the expected return component of each risk factor is

higher for small than for large stocks. For example, the contributions of the cash flow,

long term discount rate and short term discount rate news factors are 2.17%, 1.46%,

and 1.82% respectively for stocks in the lowest market equity portfolio, whereas the

corresponding figures for stocks in the highest market equity portfolio are -0.12%, 0.48%,

and 0.21%. Amongst the three risk factors, the long term discount rate news contributes

most pervasively to the overall excess return within each quintile of size sorted stocks. The

cash flow contributions are insignificant for stocks in the fourth and fifth size quintiles.

Furthermore, the contributions of the short term discount rate risk factor are close to

zero for stocks in the second, third, and fifth size quintiles. In addition, except for stocks

in the lowest market equity category, we find that the relative contribution of the longer

term discount rate risk factor is greater than that of the shorter term discount rate risk

factor. Because long term discount rate news is generally associated with a higher price

than short term discount rate news, this indicates that small firms have smaller sensitivity

to long term discount rate news as opposed to short term discount rate news in line with

Perez-Quiros and Timmermann (2000).

As regards book-to-market sorted portfolios, we find that each factor contributes sig-

nificantly to the overall expected returns across all BE/ME bins. This evidence reinforces

our findings reported above. Moreover, the contributions of the three factors are smaller

for firms with lowest BE/ME ratios relative to firms with highest BE/ME ratios. For

example, the expected return contributions of the cash flow, long term discount rate, and

short term discount rate news components are 1.99%, 1.34%, and 0.68% respectively for

stocks in the lowest BE/ME quintile, while the corresponding numbers for stocks in the

highest BE/ME quintile are 2.41%, 1.43%, and 1.60%.

Contrasting with the evidence for size portfolios where the relative importance of cash
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flow, long term discount rate and short term discount rate risk factors varies a lot across

bins, for book-to-market sorted portfolios, we find that our three risk factors have a fairly

constant impact on returns in relative terms. Specifically, the cash flow factor has the

greatest impact on the overall expected return, followed by the long term discount rate

factor. The short term discount rate factor has the lowest contribution to the expected

returns across BE/ME portfolios apart from stocks in the highest BE/ME category. Since

longer term news is rewarded with a higher price than shorter term news, this suggests

that value firms are similar to small firms in that they have smaller sensitivity to the

long term as opposed to the short term discount rate risk factor. This result echoes the

findings of Lettau and Wachter (2007) who show that firms with cash flows weighted

more to the present have a low ratio of price to fundamentals and high expected returns

relative to assets with a high ratio of price to fundamentals.

Turning to Panel C of Table 7, our estimates show that in the full sample, all three

risk factors contribute significantly to expected returns. Cash flow risks have the largest

impact on expected returns. This result is in line with the key intuition of the Merton’s

(1973) ICAPM and our evidence from baseline Fama-MacBeth (1973) regressions pre-

sented in Table 3. Moreover, the contribution of the long term discount rate risk factor

exceeds that of the short term discount rate risk factor. Differences in relative contribu-

tions of the two discount rate risk factors become stronger when we exclude small stocks

from the sample. In this case, the contribution of the short term discount rate news goes

down to about 0.35% per annum and becomes statistically not distinguishable from zero.

In sum, our evidence presented in Table 7 highlights three interesting observations.

First, while each of our three factors has a positive and statistically significant return

contribution in the full sample, there is substantial variation in the relative importance

of risk components across size and book-to-market. Second, judged by the t-statistics and

the economic magnitude of the estimates, the long term discount rate risk factor emerges
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as a more pervasive contributor to the expected returns than the short term discount rate

factor. Finally, our results indicate that small and value firms have smaller sensitivity to

long term discount rate news as opposed to short term discount rate news.

6 Additional Robustness Checks

We have performed several additional tests to examine the robustness of our results. A

detailed description and analysis are reported in the Appendix. This section provides

a brief overview of the findings. The first subsection discusses the sensitivity of our

results with respect to the choice of state variables in the system. The second subsection

asks whether our conclusions are sensitive to the news computation method. The third

subsection studies the evolution of risk prices in response to changes in the linearization

parameter values and the values of the threshold time horizon parameter. Finally, the

fourth subsection discusses the stability of our estimates over time and summarizes several

further robustness checks.

6.1 Sensitivity to the Choice of State Variables

The analysis in this paper has hitherto relied on our basic VAR which includes the log

excess market return, the log dividend-price ratio, the log consumption-wealth ratio,

the short-term interest rate, and the default yield spread. However, Chen and Zhao

(2009) warn that the loglinear return decomposition approach might be sensitive to the

particular choice of state variables in the system. To address this concern, we consider

nine alternative combinations of various return predictors to proxy for the discount rate

and cash flow news. It turns out that our main conclusions with regard to the relation of

the equity stock returns and the two market discount rate news components are almost

unaffected by the variation in the state variables. Stock return sensitivities to the longer

40



term discount rate news are rewarded with a significant premium which is economically

and statistically greater than that of the short term discount rate news.

Table 8 presents the details of this pricing exercise. Panel A of Table 8 gives an

overview of the different combinations of the state variables that we consider. The plus

signs indicate the selected variables in our baseline specification and in nine alternative

models that we evaluate. Each model contains the excess market return as a necessary

component (Campbell and Shiller (1988) and Campbell (1991)). In addition, Campbell,

Polk, and Vuolteenaho (2010) and Engsted, Pedersen, and Tanggaard (2012) emphasize

the importance of the asset price as a state variable in the VAR for the validity of the

empirical return approximation. Hence, since we deal with equities, we include a proxy

of the market dividend-price ratio or the market price-earnings ratio (interchangeably)

as a second indispensable component in the system. The other variables are in general

optional. Here we follow the related literature and consider alternative return predictors

discussed for instance in Ang and Bekaert (2007) and Welch and Goyal (2008).

Our results in Panel B of Table 8 suggest that the economic estimates of risk premia

indeed depend to some extent on the set of the underlying state variables. In particular,

it is interesting to note that the choice of the VAR can shift the relative importance of

the cash flow risks versus the discount rate risks as reported by Chen and Zhao (2009).

Yet, our main conclusions remain almost unaffected by the variation in the vector of

predictor variables. First, while sensitivities to the longer term discount rate news are

rewarded with a positive and statistically significant risk premium in eight out of nine

specifications that we examine, our estimates appear less conclusive about the short term

discount rate risk premium: Different specifications suggest that the short term discount

rate news can be positively, negatively or insignificantly priced. Secondly, the premium

for the longer run discount rate news exceeds its short term counterpart in economic and

statistical terms with the only exception of Specification VIII.
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Overall, despite the differences in the magnitudes of the estimated prices of risk across

the alternative VAR specifications, a problem common to this methodology, our main

finding of a higher price of longer term discount rate risk is generally upheld. Please

consult a separate Appendix on further discussion of these results and details on how we

construct the data.

6.2 Directly Modeled Cash-Flow News

With a focus on innovations driven by discount rate news, this paper conventionally treats

the cash flow news as a residual. In this vein, Engsted, Pedersen, and Tanggaard (2012)

and Campbell, Polk, and Vuolteenaho (2010) argue that in a properly specified VAR,

the risk premia are not necessarily affected by the decision to forecast returns or cash

flows. However, Chen and Zhao (2009) and Chen, Da, and Zhao (2013) emphasize the

importance of the news computation method for the relative significance of permanent

and temporary shocks.

To address this criticism in our setup, we use a separate VAR system to model the

cash flow news directly and independently of the discount rate news. This method ac-

knowledges the fact that there is a noise component in stock returns which cannot be

explained by permanent shocks to the dividend stream or transitory shocks associated

with changes in discount rates.

In general, we find that the relative significance of the cash flows can change when

we estimate them independently of the future returns. We also find that the noise betas

are important in explaining cross sectional patterns in the data (see also, Garrett and

Priestley (2012)). However, our results indicate that the news computation method has no

material impact on the relative importance of the long-term and the short-term discount

rate risks. Overall, our analysis further reinforces that the long run discount rate news

is priced most consistently and pervasively across specifications and commands a higher
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premium than short run discount rate news. We defer a more detailed discussion of this

issue to the Appendix.

6.3 Sensitivity to Changes in ρ and h

In our benchmark specification, we follow Campbell and Vuolteenaho (2004) and assume

ρ = 0.95 per year. We looked at the ρ parameter values between 0.93 and 0.97 but found

that these changes have only a small impact on our estimates. Overall, the estimates of

the longer term discount rate risk premium are more sensitive to changes in ρ because

they are discounted more heavily. Higher values of ρ are typically associated with greater

cash flow risk prices, lower long term discount rate prices, lower short term discount

rate rate prices, and smaller differences between λldr and λsdr. While higher values of ρ

imply a flatter term structure of equity risk premium, our results are generally robust to

reasonable variation in the parameter ρ.

A further important parameter in our decomposition is h, a threshold value to distin-

guish between the long term and the short term discount rates. The results reported in

this paper are based on the value of h equal to four quarters. Our choice of the one-year

horizon is motivated by practical reasons. We have experimented with lower and higher

values of h but found that these changes had no significant impact on our conclusions. In

general, the choice of h has no effect on the cash flow risk premium estimate and only a

negligible impact on the short term discount rate risk premium estimate. Higher values

of h imply larger estimates of the price of risk for the longer term discount rate news

but lower its statistical significance. Accordingly, higher values of h are associated with

economically larger but statistically less precisely measured differences between the two

discount rate risk premia.
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6.4 Further Sensitivity Tests

We have also investigated the sensitivity of our findings in the following dimensions: (i)

the stability of prices of risk over different sub-samples, (ii) alternative sample periods to

derive the news proxies, (iii) different rolling window lengths in the Fama and MacBeth

(1973) estimation procedure, and (iv) alternative thresholds for winsorizing the data. We

verify that none of these changes alter our main conclusions. The Appendix contains

further details on these robustness checks.

7 Simulation

Our findings that short-term discount rate risk has a lower price of risk than the long-

term discount rate risk does not contradict with a downward-sloping term structure of

zero coupon equities’risk premium. In this Section we simulate a risk-based model to

show this. Our empirical estimation captures shocks to the expected market holding

period return rather than to discount rates on dividend strips. Before proceeding with

the simulations, we would like to outline the difference between the two types of shocks.

The value of the market porftolio be the sum of the values on all dividend strips,

namely the claims to aggregate dividends at each of the future dates, and is given by

Pm
t =

∞∑
n=1

Pnt, (22)

where Pnt denote the price of an asset that pays the aggregate dividend n periods

from now and nothing in-between (a dividend strip). The market return is a weighted

average of the returns on all dividend strip returns:

Et (Rm,t+1) =

∞∑
n=1

wtnEt (Rn,t+1) , (23)
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where wtn = Pnt
Pmt
. Note that shocks to the expected market returns can stem from

shocks to the expected returns of any combination of the expected returns on the divi-

dend strips (which constitute also shocks to the weights), as well as shocks to expected

dividends which constitute shocks to the weights. Thus, a shock to the expected hold-

ing period on the market for a given horizon can be explained by an infinite number of

combinations of shocks to discount rates and cash flows on the dividend strips.

To show this, we modify the dynamic risk-based model in Lettau and Wachter (2007),

in particular their specification of the time-varying price of risk, and keep other ingredients

intact. That is, our model has four shocks in total: a shock to dividend growth, a shock

to expected dividend growth, and two components of shocks to the price of risk (One

captures transient short term discount rate risk, and the other characterizes the long

term discount rate risk, each of which takes a form of a mean-reverting process). The

rest of this section summarizes the primary settings of this asset pricing model, and briefly

discusses the results from simulation.16

We denote a 4×1 vector of independent standard normal shocks as εt+1. These shocks

are independent of what econometricians can observe at time t. Let dt denote the log

aggregate dividend in the economy at time t. The aggregate dividend process evolves

according to

∆dt+1 = g + zt + σdεt+1 (24)

in which zt follows the AR(1) process

zt+1 = φzzt + σzεt+1 (25)

with 0 ≤ φz < 1. These specifications are the same as in Lettau and Wachter (2007).

The price of risk is exposed not only to short-term shocks, but also to long-term

16We refer interested readers to the online Appendix for further details on model set-up, derivation,
calibration and simulation.

45



shocks. We assume that the long-term component of the price of risk is driven by a state

variable x̄ which follows a highly persistent process

x̄t+1 = µx̄ + φx̄x̄t + σx̄εt+1 (26)

with −1 ≤ φx̄ < 1. The constant µx̄ determines the long-term mean which x̄ reverts to.

The price of risk at time t+ 1 is assumed to be governed by

xt+1 = (1− φx)x̄t + φxxt + σxεt+1 (27)

with −1 ≤ φx < 1. It is a convex combination of x̄t and xt plus shocks to the short-

term discount rate coming in the current period. This process captures a rapidly mean-

reverting shorter-run component of price of risks. The loading of xt+1 on x̄t is given by

(1 − φx). This system has one more degree of freedom than the specification in Lettau

and Wacther (2007).17

We assume that the stochastic discount factor (denoted as Mt+1) is an exponential-

affi ne process. By doing so, we can accommodate the correlations among the risk factors

driving asset returns, and get computationally tractable pricing relations that can be

used in estimation (Singleton, 2006). It can be shown that Mt+1 takes the form of

Mt+1 = exp

{
−rf − 1

2
φ2
xx

2
t −

1

2
(1− φx)2x̄2

t − φx(1− φx)xt · x̄t − φxxtεd,t+1 − (1− φx)x̄tεd,t+1

}
,

(28)

where rf = lnRf denotes the log constant risk-free rate, and εd,t+1 = σd
‖σd‖εt+1.

We focus on the prices of “zero-coupon”equities, the sum of which is identical to the

price of the aggregate dividend in our economy. Recall that Pnt denote the price of an

asset that pays the aggregate dividend n periods from now and nothing in-between. The

17Such a structure is also utilized in Drechsler and Yaron (2012), Bansal and Shaliastovich (2009), and
Duffi e, Pan, and Singleton (2000) which entertain a LRR model with 2-volatility processes.
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very same asset’s price at time t+1 is denoted by Pn−1,t+1. We conjecture that a solution

to the pricing equation Pnt = Et[Mt+1Pn−1,t+1] should satisfy

Pnt
Dt

= F (xt, x̄t, zt, n) = exp{A(n) +Bx(n)xt +Bx̄(n)x̄t +Bz(n)zt} (29)

with a boundary condition, P0t = Dt. The coeffi cients in equation (29), and henceforth

the price series for the zero-coupon equities can be solved for in closed form.

The model is calibrated by using the quarterly data set described in Section 4. We

consider two model setups: a baseline model in which shocks to cash flows are uncorrelated

with shocks to either component of the price of risks, and a full-fledged model which takes

into account pair-wise correlation between ∆dt+1, zt+1 and xt+1, x̄t+1. Panel A of Table

9 summarizes the parameter choices. Note that both components of the discount rate

shocks are negatively correlated with the expected dividend growth rate shocks. Expected

dividend growth and dividend growth shocks are negatively correlated ( ρ∆d,z = −0.7800),

indicating that the hedging effect from shocks to expected dividend growth as reported

in Lettau and Wachter (2007) also exists in our simulated models. The prices of risk

for both components of discount rate shocks are positively correlated with the dividend

growth rates, but the correlation is lower for the short-term component (ρ∆d,x = 0.42).

The opposite pattern applies to the correlation between the two components of the price

of risks and the expected dividend growth, with ρz,x = −0.49 which is somewhat lower

than ρz,x.

We simulate 50,000 quarters from the system. Given simulated data on the shocks εt+1

and state variables, we compute ratios of prices to aggregate dividends for zero-coupon

equities according to (29). The quarterly return for a zero-coupon equity to mature in n

quarters is computed as Rn,t+1 = Pn−1,t+1/Pnt. Panel B of Table 9 reports the estimated

price of risk for short- and long-term discount rate shocks separately. The price of risk

for the short-term discount rate shocks based on the baseline model is 0.299, which
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is lower than its long-term counterpart 0.453. By comparison, the full-fledged model

generates a pair of slightly higher prices, but their ratios remain the same. The p-values

at the bottom of Panel B computed by running Welch two-sample t-test indicate that

the differences between the estimated price of risk for short- and long-term discount rate

shocks are highly statistically significant. Compared with the average Sharpe ratio for

the simulative market obtained by Lettau and Wachter (2007) , which is 0.41 per annum,

our estimates for the short-term components of the price of risks (0.299 p.a. based on the

benchmark model and 0.304 p.a. based on the full-fledged model) are closer to the data

equivalent of 0.33 as reported in Lettau and Wachter (2007). The gain in precision is

largely attributed to disentanglement from the long-term component of the price of risk

when setting up the dynamics of the price of risk for short-term discount rate shocks.

Absence of this often leads to an upward-biased estimate for the price of risk.

This simulative result of different prices for the two components of discount rate

risk coexists with the downward-sloping term structure of zero-coupon equities. The

top panel of Figure 2 plots the risk premium for annualized holding period returns of

individual zero-coupon equities. Both the baseline and full-fledged models produce a

larger difference between the average returns of low and high duration assets relative to

the Lettau and Wachter (2007) model. That is, decomposing the discount rate risk into

the short- and long-term components renders the term structure of zero-coupon equities

even more downward-sloping. The middle panel of Figure 2 illustrates that the return

volatility initially increases with maturity and reaches it peak around 3 years. Then it

monotonically decreases and quickly converges at maturities greater than 15 years. The

hump-shaped pattern for return volatility reported by Lettau and Wachter (2007) is not

obvious in our model. The bottom panel of Figure 2 plots the unconditional Sharpe

ratios. Similar to Lettau and Wachter (2007) model, firms with more cash flow to be

realized in the immediate future have higher Sharpe ratios than firms having more cash
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flows in the far future.

The downward-sloping pattern for the term structure of risk premium for zero-coupon

equities does not readily apply to the risk premia for holding the market portfolio over

periods of various lengths. Figure 3 plots the annualized holding period returns for the

CRSPVW market portfolio for various holding periods. In the data, the term structure

of the market’s holding period returns is somewhat downward sloping, albeit very non-

monotonically. For instance, the annualized risk premium for holding the market portfolio

for 20 years is on average higher than for merely 3 years. The other plots in Figure 3 are

based on three simulative models, all of which generate monotonically decreasing term

structure of the risk premium. Our simulative models (baseline and full-fledged) yield a

pattern which matches the real data better than Lettau and Wachter (2007) model in a

sense that the annualized risk premium drops rapidly in the first 3 years. Nevertheless,

the mean risk premium in Lettau and Wachter (2007) model is closer to the real mean

than our models in terms of magnitude.

8 Conclusion

The literature has thus far ignored the asset pricing implications of the empirical fact

that stock returns are predictable at short and long horizons with different variables,

suggesting a term structure in discount rates. We exploit this in order to show that there

are two discount rate factors and one cash flow factor driving the cross section of stock

returns. This enables us to connect the empirical findings that discount rate variation

is driven by a short run business cycle component and a longer run trend component to

risk factors in the cross section of stock returns. The decomposition of discount rates into

short term and long term parts leads to state variable hedging of these two components

and ICAPM logic implies a three factor model for expected returns.
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In estimating a three factor ICAPM model, with both types of discount rate shocks

and cash flow shocks, we find that while the price of risk of cash flow shocks is the highest,

both types of discount rate shocks earn an economically meaningful and statistically

significant risk premium. In particular, the price of risk of long term discount rate shocks

is considerably higher than the price of risk of short term discount rate shocks. This

finding is consistent with heterogeneity in investors’investment horizons. We also find

that long term discount rate risk is priced consistently across samples while the short

term discount rate risk premium is largely due to low market equity firms.

Our findings provide evidence on the types of risks investors require a premium for

holding and make an important step towards understanding the factor structure of time

varying expected returns.
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Table 1: Summary of Forecasting Regressions

The table reports estimation results of long-horizon forecasting regressions of the form

r
e,(h)
m,t+1 = a

(h)
0 +a

(h)
1 ×cayt+ε

(h)
t+1 in Column I and r

e,(h)
m,t+1 = b

(h)
0 +b

(h)
1 ×dpt+ε

(h)
t+1 in Column

II. re,(h)
m,t+1 denotes the log excess return on the value-weighted CRSP return at time t+ 1

over a horizon of h quarters, cayt is the log consumption-wealth ratio of Lettau and

Ludvigson (2001), and dpt is the log dividend-price ratio on the S&P 500 index. The

t-statistics in parentheses use the Hansen-Hodrick (1980) correction. R2 is the adjusted

R2 in %. The sample period is 1952Q1-2013Q3.
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I II

h cayt R2 dpt R2(%)

1 0.62 1.30 0.02 0.86

(2.01) (1.59)

4 2.37 5.32 0.10 4.84

(1.92) (1.74)

12 5.08 12.78 0.23 15.84

(2.67) (2.51)

16 5.96 19.12 0.25 19.62

(4.01) (3.32)

20 6.79 22.69 0.27 21.06

(4.22) (4.70)

40 6.08 12.89 0.39 28.71

(3.28) (4.75)

60 2.09 1.85 0.48 34.83

(1.19) (4.32)

80 0.32 -0.54 0.60 49.02

(0.22) (5.82)

100 -2.08 3.24 0.39 33.94

(-1.26) (4.11)

120 -2.49 10.60 0.24 28.51

(-2.05) (3.58)
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Table 2: VAR Coeffi cient Estimates

The table shows OLS parameter estimates for a first order VAR model including the

log excess market return (rm), the log dividend-price ratio (dp), the log consumption-

wealth ratio (cay), the short-term interest rate (i), and the default yield spread (def).

All variables are mean-adjusted. Each row corresponds to a different dependent variable.

The first five columns report coeffi cients on the explanatory variables listed in the column

header; the last column shows the adjusted R2 statistics in %. In parentheses are two

t-statistics for each coeffi cient estimate. The top statistic uses OLS standard errors; the

bottom statistic uses the Newey-West (1987) correction. The sample period is 1952Q1-

2013Q3.

rm,t dpt cayt it deft R2(%)

rm,t+1 0.05 0.04 0.95 -0.03 0.03 7.11

(0.79) (2.69) (3.06) (-3.56) (2.01)

(0.67) (2.57) (3.19) (-3.07) (1.29)

dpt+1 -0.12 0.97 -0.90 0.02 -0.03 96.77

(-2.17) (77.16) (-3.20) (3.09) (-2.21)

(-1.62) (77.92) (-3.12) (3.09) (-1.37)

cayt+1 -0.00 0.00 0.92 0.00 -0.00 87.38

(-0.02) (0.39) (37.85) (2.13) (-2.19)

(-0.02) (0.46) (41.42) (2.43) (-1.97)

it+1 0.20 0.02 -1.27 0.99 -0.11 93.51

(1.43) (0.64) (-1.79) (51.26) (-3.28)

(1.41) (0.65) (-1.85) (46.87) (-3.18)

deft+1 -0.73 -0.01 -0.84 0.06 0.82 78.70

(-5.21) (-0.44) (-1.19) (3.22) (25.73)

(-5.13) (-0.56) (-1.39) (2.64) (17.16)
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Table 3: Baseline Cross-Sectional Regressions

The table reports Fama-MacBeth (1973) estimates of risk prices in percent per annum

and their HAC t-statistics in parentheses for the single-beta CAPM (Column I), the two-

beta ICAPM (Column II), the three-beta ICAPM (Column III), and the three-factor

Fama-French model (Column IV). Specifications in Columns I-A, II-A and III-A represent

augmented models with characteristics. The news series are computed from a VAR system

in Table 2 following definitions (2)-(4), (10) and (11). We set the linearization parameter

ρ to 0.95 per annum and the horizon h to one year. In quarterly recursive cross-sectional

regressions, we regress average returns over 40-quarter overlapping rolling time-series

estimation windows on time-varying risk loadings computed following definitions (6)-(8),

(14) and (15) over the same rolling window. Stocks with one or more missing data points

in a specific estimation window are deleted from the cross-sectional regression for that

window. Returns in each window have been winsorized at the 1% and 99% levels. The

log market capitalization (Size) and log book-to-market ratio (Value) are measured in the

first quarter of each rolling window. The Size and Value controls have been winsorized at

the 1% and 99% levels in each window. There are 162 overlapping estimation windows

in total. The first window covers the period 1963Q3-1973Q2; the last window covers

the period 2003Q4-2013Q3. R2 is average adjusted cross-sectional R2 in percent. "Diff."

reports results of a t-test for differences in estimated discount-rate and cash-flow risk

premia in Columns II and II-A, and long-term and short-term discount-rate risk premia

in Columns III and III-A.
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I II III IV I-A II-A III-A

λ0 6.24 6.24 6.22 10.57 21.10 21.16 22.10

(11.23) (11.08) (10.53) (19.24) (12.90) (12.68) (13.36)

λm 4.50 0.75 4.10

(11.66) (1.20) (11.62)

λcf 5.92 5.70 5.61 4.68

(8.79) (7.80) (9.07) (6.82)

λdr 3.58 3.54

(6.71) (6.66)

λldr 5.07 5.50

(11.64) (12.88)

λsdr 3.03 2.77

(4.15) (3.41)

λHML -0.96

(-1.59)

λSMB 0.21

(0.42)

Size -1.17 -1.17 -1.25

(-9.57) (-9.34) (-9.85)

Value 1.12 1.15 1.16

(6.68) (6.63) (6.78)

Diff. - -2.34 2.04 - - -2.07 2.73

- (-2.64) (3.40) - - (-2.29) (3.77)
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Table 4: Characteristics of Single-Sorted Portfolios Formed on Risk Exposures

The table lists the average equal-weighted (EW) and value-weighted (VW) returns in

percent per annum of portfolios sorted on estimated betas. The time-varying betas are

computed recursively, on a quarterly basis, in 40-quarter overlapping rolling time-series

estimation windows following definitions (12), (18) and (19). Stocks with one or more

missing data points in a specific estimation window are deleted from the cross-sectional

regression for that window. Returns in each window have been winsorized at the 1% and

99% levels. There are 162 overlapping estimation windows in total. The first window

covers the period 1963Q3-1973Q2; the last window covers the period 2003Q4-2013Q3.

For each risk characteristic, we rank individual stocks into quintiles and form portfolios

of average returns in each estimation window. Portfolio Low contains stocks with the

lowest betas, whereas portfolio High contains stocks with the highest betas. For each

portfolio, we report the average market share in percent (Mkt Share), average log market

capitalization (Size), average book-to-market (B/M) characteristics. The row labeled

"High-Low" reports the difference between the returns of portfolio High and portfolio

Low. The row labeled "t-stat." is the HAC t-statistic for the difference in returns on

portfolio High and portfolio Low.
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Rank EW VW Mkt Share Size B/M

Panel A: Portfolios Sorted by βcf

Low 8.85 8.22 22.45 6.05 0.93

2 9.29 8.55 25.01 6.12 0.88

3 10.31 9.57 22.61 6.08 0.85

4 11.56 10.98 19.06 5.99 0.85

High 14.12 14.92 10.88 5.73 0.85

High-Low 5.27 6.70

t-stat. (6.95) (6.98)

Panel B: Portfolios Sorted by βldr

Low 9.39 7.86 14.69 5.88 0.99

2 9.34 8.67 24.03 6.11 0.87

3 10.27 9.72 24.93 6.13 0.83

4 11.32 10.59 22.84 6.09 0.83

High 13.81 13.03 13.51 5.85 0.84

High-Low 4.42 5.17

t-stat. (11.79) (10.70)

Panel C: Portfolios Sorted by βsdr

Low 10.25 9.31 17.80 5.93 0.87

2 9.44 8.75 24.03 6.11 0.84

3 10.14 9.27 25.25 6.13 0.84

4 11.00 9.91 20.74 6.04 0.87

High 13.30 12.26 12.18 5.79 0.93

High-Low 3.05 2.95

t-stat. (5.08) (3.89)
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Table 5: Returns on Double-Sorted Portfolios Formed on Risk Exposures

The table lists the average equal-weighted returns in percent per annum of indepen-

dent double sorts on estimated cash-flow and long-term discount-rate betas in Panel A,

cash-flow and short-term discount-rate betas in Panel B, and long-term discount-rate

and short-term discount-rate betas in Panel C. The time-varying betas are computed

recursively, on a quarterly basis, in 40-quarter overlapping rolling time-series estimation

windows following definitions (12), (18) and (19). Stocks with one or more missing data

points in a specific estimation window are deleted from the cross-sectional regression for

that window. Returns in each window have been winsorized at the 1% and 99% levels.

There are 162 overlapping estimation windows in total. The first window covers the pe-

riod 1963Q3-1973Q2; the last window covers the period 2003Q4-2013Q3. For each risk

characteristic, we first rank individual stocks into terciles and form portfolios of average

returns in each estimation window. Portfolio Low contains stocks with the lowest betas,

whereas portfolio High contains stocks with the highest betas. We then form 3x3 portfo-

lios which are the intersections of respectively two categories of beta sorts. "High-Low"

reports the difference between the returns of portfolio High and portfolio Low. "t-stat."

is the HAC t-statistic for the difference in returns on portfolio High and portfolio Low.
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Panel A: Portfolios Sorted by βcf and βldr

Rank Low CF Med High CF High-Low t-stat.

Low LDR 8.25 9.47 12.61 4.36 (6.55)

Med 9.05 10.02 12.29 3.24 (5.78)

High LDR 11.26 11.65 13.94 2.68 (4.67)

High-Low 3.02 2.18 1.33

t-stat. (7.36) (7.80) (4.59)

Panel B: Portfolios Sorted by βcf and βsdr

Rank Low CF Med High CF High-Low t-stat.

Low SDR 8.51 10.00 12.84 4.33 (7.28)

Med 8.70 9.89 12.39 3.69 (8.71)

High SDR 9.88 11.36 14.22 4.34 (7.61)

High-Low 1.37 1.37 1.38

t-stat. (2.74) (3.39) (2.70)

Panel C: Portfolios Sorted by βldr and βsdr

Rank Low LDR Med High LDR High-Low t-stat.

Low SDR 7.73 8.98 12.10 4.37 (12.19)

Med 8.54 9.88 12.56 4.02 (11.57)

High SDR 11.11 12.25 15.11 3.99 (8.81)

High-Low 3.39 3.27 3.01

t-stat. (6.72) (6.91) (4.81)
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Table 6: Size and Book-to-Market

The table reports Fama-MacBeth (1973) estimates of risk prices for the three-beta

ICAPM in percent per annum and their HAC t-statistics in parentheses for various sub-

samples. In Panel A, we sort all companies in each rolling window based on their market

capitalization and construct five quintiles. In Panel B, we sort all companies in each rolling

window based on their book-to-market value and construct five quintiles. In Panel C, we

consider all stocks and all but the lowest market equity stocks. "Diff." reports results of

a t-test for differences in estimated long-term and short-term discount-rate risk premia.
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Panel A: Size Quintile Portfolios

Small 2 Med 4 Large

λ0 7.82 8.10 7.11 5.53 6.57

(12.05) (18.26) (13.48) (9.47) (15.73)

λcf 6.23 2.98 3.25 1.01 0.09

(9.08) (2.99) (2.53) (1.22) (0.08)

λldr 5.97 4.94 4.21 5.76 2.70

(10.65) (8.27) (4.36) (7.17) (4.10)

λsdr 3.98 0.69 0.94 3.13 0.83

(5.26) (0.66) (0.93) (3.62) (0.82)

Diff. 2.00 4.25 3.27 2.63 1.88

(3.69) (3.65) (3.40) (2.61) (2.16)

Panel B: Book-to-Market Quintile Portfolios

Growth 2 Med 4 Value

λ0 5.66 4.96 5.34 6.39 7.74

(9.09) (7.51) (7.12) (11.88) (13.16)

λcf 4.58 6.14 5.74 7.34 8.12

(7.30) (6.66) (4.98) (9.01) (9.95)

λldr 4.79 5.49 5.99 5.68 6.08

(10.08) (10.27) (9.33) (7.21) (9.40)

λsdr 2.06 3.61 4.36 3.44 3.14

(2.56) (4.32) (6.08) (3.93) (3.29)

Diff. 2.73 1.88 1.63 2.23 2.93

(3.75) (2.72) (2.08) (3.44) (3.12)
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Panel C: All Stocks and All Apart From Small Stocks

Excl.

All Small

λ0 6.22 6.30

(10.53) (11.85)

λcf 5.70 3.64

(7.80) (4.15)

λldr 5.07 4.27

(11.64) (7.39)

λsdr 3.03 1.25

(4.15) (1.50)

Diff. 2.04 3.03

(3.40) (3.46)
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Table 7: Expected Return Contributions

This table gives the time-series averages of expected return contributions attributed

to each factor in the three-beta ICAPM in percent per annum and their HAC t-statistics

in parentheses for various subsamples. We compute λjt × βjt, where j denotes the cash-

flow (cf), long-term discount rate (ldr) and short-term discount rate (sdr) risk factors,

βjt is the cross-sectional mean of beta for risk factor j computed following definitions

(12), (18) and (19) over 40-quarter overlapping rolling time-series estimation window t

and λjt is the respective premium estimate. In Panel A, we sort all companies in each

rolling window based on their market capitalization and construct five quintiles. In Panel

B, we sort all companies in each rolling window based on their book-to-market value and

construct five quintiles. In Panel C, we consider all stocks and all but the lowest market

equity stocks.
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Panel A: Size Quintile Portfolios

Small 2 Med 4 Large

λcf× βcf 2.17 1.07 1.12 0.30 -0.12

(5.52) (4.19) (2.85) (1.36) (-0.50)

λldr× βldr 1.46 1.53 1.08 1.80 0.48

(4.88) (5.46) (3.38) (6.21) (2.83)

λsdr× βsdr 1.82 0.08 0.28 0.86 0.21

(3.96) (0.21) (0.90) (3.09) (0.74)

Panel C: Book-to-Market Quintile Portfolios

Growth 2 Med 4 Value

λcf× βcf 1.99 2.44 2.03 2.17 2.41

(7.10) (7.66) (6.70) (7.30) (5.82)

λldr× βldr 1.34 1.58 1.56 1.32 1.43

(5.68) (6.34) (5.42) (4.04) (4.50)

λsdr× βsdr 0.68 1.18 1.48 1.25 1.60

(2.37) (4.48) (5.70) (3.52) (2.80)

Panel C: All Stocks and All Apart From Small Stocks

Excl.

All Small

λcf× βcf 2.25 1.33

(7.10) (7.37)

λldr× βldr 1.22 1.10

(6.08) (5.43)

λsdr× βsdr 1.14 0.35

(3.91) (1.39)
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Table 8: Alternative VAR Specifications

We consider nine alternative VAR specifications to model discount rate news. Panel A

describes our choice of the respective state vectors. The state variables include different

combinations of the log excess market return (rm), the log dividend-price ratio (dp), the

log consumption-wealth ratio (cay), the short-term interest rate (i), the default yield

spread (def), the log ten-year price-earnings ratio (pe10), the log one-year price-earnings

ratio (pe1), the small stock value spread (vs), the term yield spread between long-term

and short-term bonds (ty), stock variance (svar), inflation rate (cpi), the book-to-market

spread (bm). The plus signs indicate the selected variables in our baseline specification

and the alternative specifications we examine. Panel B reports Fama-MacBeth (1973)

estimates of risk prices for the three-beta ICAPM in percent per annum and their HAC

t-statistics in parentheses. "Diff." reports results of a t-test for differences in estimated

long-term and short-term discount-rate risk premia.

Panel A: Variables in VAR

Specification rm dp cay i def pe10 pe1 vs ty svar cpi bm

Baseline + + + + +

I + + + +

II + + + +

III + + + +

IV + + + + +

V + + + +

VI + + + +

VII + + + +

VIII + + +

IX + + + + +
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Panel B: Cross-Sectional Risk Premium Estimates

I II III IV V VI VII VIII IX

λ0 6.27 6.35 6.35 6.23 6.68 6.65 6.30 6.40 6.30

(10.96) (11.09) (11.11) (10.50) (11.69) (11.52) (11.19) (10.65) (11.05)

λcf 5.28 11.58 3.85 5.83 7.50 8.03 6.15 11.50 7.27

(7.54) (9.72) (7.27) (7.82) (3.98) (4.16) (9.16) (7.46) (8.36)

λldr 5.62 24.62 6.35 4.43 7.95 4.20 212.28 -6.10 9.58

(7.51) (6.35) (11.26) (8.70) (1.90) (2.04) (2.15) (-2.88) (8.88)

λsdr 3.63 -2.48 4.52 3.23 2.06 1.89 -4.59 0.51 0.87

(7.00) (-1.58) (10.38) (4.76) (1.56) (1.48) (-1.72) (0.44) (0.83)

Diff. 2.00 27.10 1.83 1.20 5.89 2.31 216.87 -6.61 8.71

(2.29) (5.13) (2.90) (2.63) (1.90) (2.29) (2.15) (-4.42) (5.09)

73



Table 9: Parameter choices and the Estimated Prices of Risk

Model parameters reported in Panel A are calibrated to the available data set spanning

periods as long as possible. The unconditional mean of dividend growth g, the risk-free

rate rf , the persistence variables φx̄ and φx, and the standard variance of short- and

long-term discount rate shocks ( ‖σx̄‖ and ‖σx‖) are estimated using data from 1872Q1

to 2015Q4. The persistence variables φz, the standard variance of ∆dt+1 and zt+1 (‖σd‖

and ‖σz‖), and the elements in the correlation matrix (the ρ’s, i.e., correlation coeffi cients

between shocks of the state variables pair-wisely) are estimated using data from 1952Q2

to 2015Q4 due to the lack of data for cay prior to year 1952. All numbers reported are

on quarterly frequency. Panel B reports the price of risks for short-term discount rates

shocks (E [φxxt]) and the long-term discount rate shocks (E [(1− φx)xt]). The bottom

line reports the p-values from the Welch two-sample tests.
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Panel A: Parameter choices

Variable Baseline Model Full-fledged Model

g 0.0125 0.0125

rf 0.0088 0.0088

µx̄ 0.0264 0.0264

φz 0.9190 0.9190

φx̄ 0.9660 0.9660

φx 0.3980 0.3980

‖σd‖ 0.1250 0.1250

‖σz‖ 0.0095 0.0095

‖σx̄‖ 0.0703 0.0703

‖σx‖ 0.0259 0.0259

ρx,x̄ 0.6210 0.6210

ρ∆d,z - -0.7800

ρ∆d,x̄ - 0.6110

ρ∆d,x - 0.4160

ρz,x̄ - -0.4470

ρz,x - -0.4860

Panel B: Price of the discount rate risk

Prices Baseline Model Full-fledged Model

E[(1− φx)x̄t] 0.453 0.460

E[φxxt] 0.299 0.304

Diff. 0.154 0.156

p-value 0.000 0.000
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Figure 2: Annualized Holding Period Returns For Zero-Coupon Equities

The top panel shows risk premia on zero-coupon equity over the constant risk-free

rate. The middle panel shows the standard deviation of returns on zero-coupon equity.

The bottom panel shows the corresponding Sharpe ratio. Returns on zero-coupon equities

of varying maturities are simulated at quarterly frequency, and aggregated to an annual

frequency.
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Figure 3: Annualized Risk Premia For Holding Aggregate Market Portfolios

This figure plots the annualized risk premia by holding market portfolios over the

period from 1 year to 50 years. All return series are computed as the exponential mean

of holding period returns subtracting the corresponding risk-free rates. The annualized

risk premia for holding CRSP value-weighted aggregate market portfolio (CRSPVW) are

computed using actual annual return series spanning the period from year 1927 to 2015.

The blue line plots the annualized risk premia based on the annual returns on market

portfolio generated by the baseline model. And the dashed line plots the annualized risk

premia based on the annual returns on market portfolio generated by the full-fledged

model. The dotted line plots the simulative annualized risk premia for holding the ag-

gregate market portfolio generated by the Lettau and Wachter (2007) model.
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