BOUNDING CERTAINTY EQUIVALENT FACTORS AND RISK
ADJUSTED DISCOUNT RATES

@yvind Béhren*

The Problem

The certainty equivalent (CE) and risk adjusted discount rate (RADR)
models have long been used for evaluating stochastic, multiperiod cashflows.
FX= {X¢} isan uncertain cashflow with expectation X = { X; } and
certainty equivalent X= { X, } , cashflow values are respectively computeu as
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Theseti= { iy} in (1) contains riskfree rates, whereasa = { a; | is the set
of CE-factors; ay adjusting time t expected cashflow into the time t CE. In (2),
r= {1} isthe set of RADRs, 1; transforming X directly into a present value,
Thus (1+r¢)~t in RADR corresponds to a; (1)~ in CE, both converting the
expectation of X into a time zero value. ‘

Since the estimation of @ and r may be difficult in practice, a simplifying
device is to put A priori bounds on their values. Before estimation starts, the
decision maker may for instance exclude ai>1 or ;<0. Moreover, he may
choose only to consider certain time profiles of a or 1, like just monotone
or constant ones. In both cases, however, particular assumptions are implicitly
made about the properties of X and the way it is valued. This paper explores
the exact nature of such assumptions.

Risk adjustment factors in CE and RADR models are exogeneous, That
is, neither one tells how to measure and price risk through a and r, which are
simply undefined inputs in (1) and (2). Consequently, the term valuation model
is a misnomer, as some external valuation principle is required before VCE and
VRADR can be computed.

Several authors have suggested proper risk adjustments at a fixed time t.
However, different external models are used which all are rather ad-hoc in a
market context of multiperiod uncertainty. Moreover, only some of the re-
lationships between ay and r; versus X and valuation are discussed. Specifically,
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Everett and Schwab (1979) do not specify any external model except in very
general terms (p.62). Bar-Yosef and Mesznik (1977) use individual utility func-
tions to show that no bounds can be put on a;. Schwab (1978) derives some
properties of a; and ry in a total risk context, whereas Ma (1980) shows that
with negative beta in a single-period CAPM, a; may exceed unity. A similar
approach is also used by Miles and Choi (1979) Kudla (1980), Berry and Dyson
(1980) and others referenced therein, discussing CE and RADR models when
X is an outflow.

The next section of this paper generalizes and extends these results, using
time-state-preference (TSP) as external valuation principle. Besides being theo-
retically superior and generally accepted for market contexts of multiperiod
uncertainty, its careful description of uncertainty shows the economic contents
of the bounds quite well.

As to the choice of time profiles for a and r, the only paper this author
knows is Robichek and Myers’ (1966) on the unphca‘uons of r; = 1, still refer-
enced in most finance textbooks. The third section discusses flat profﬂes for 1 as
well as_a, subsequently showing the counterintuitive properties of aand 1 when
X is an outﬂow The final section summarizes the paper in detail.

The Range of a; and r;
In the TSP model the value V of cashflow X ={ X} is

T sg)
V = 2 V= z S . (3)
t=0 t=0 s=1

V, is the TSP value of Xt, t and S(t) are respectively the number of periods and
t1me t states, and ¢st is the present price of a prospective $1 in state s at f.
Finally, Xt = Xst} is the S(t) state-contingent payoffs of X at t, paying Xst
withcertaintyif and only if s occurs.

As a riskless position results from buying claims to equal amounts in every
state, the present price of a deterministic dollar at t is ¢y = E @i, the riskless
discount rate i being iy = ¢4—1/t—1.

Having specified the external valuation model, TSP consistent risk adjust-
ment factors a; and ry may be defined by requiring VCE; = VRADRy = Vi,
Thus,

at Vt/ Xt(l)t E Xst¢st/ (¢t E XSt Pst) ................. (4)

o= @)1 = KyVpllt-1 = (& Xt Pa/Z Xl/=1 .. ()
Two points should be noticed. First, since Pg; is the subjective probability of
state s occurring at t, neither a; nor r; is a market parameter. Thus, unlike with
the CAPM as external valuation principle, TSP consistent risk adjustments may
vary across market participants.
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Second, because the TSP model is value additive over time, both a¢, ry and
any bound depend on time t data alone. This happens because complete markets
dllow any cashflow Z to be traded for any equally-valued pattern Y. Without
this property, however, the value of X would depend on the remaining Xk
EX k#t, and X could not be separated out for independent valuation. Thus,
although all the referenced papers determine a; and 14 from time t data alone,
that implicitly assumes time additivity in the external valuation model. Unlike
the external models used by these authors, the economic environment behind
(3) includes multiperiod completeness.

Turning next to the various restrictions on a; and r; implied by (3), the
CE model permits uncertainty in time zero cashflow. Because VRADRg =
Xg for any rp, however, full certainty is implicitly assumed. The following
presupposes 0.

TABLE 1
BOUNDS ON RISK ADJUSTMENT PARAMETERS IMPLIED BY TSP VALUATION

@ (®) © CY) © ® ® ®
Risk _ _ | _ _ —
adjustment Xt >0 Xt =0 (V tXf.)<0 Vt >0 Vt =0 Vt=Xt ¢t (Vt/ Xt¢t)>1 \Z t/ Xt)>1
parameter

ay > e unde- <0 >0 0 1 >1 >(1+pt
fined
Iy > —1 -1 imaginary | > « unde- i <ig <0
at even fined
dates, real
otherwise

- As shown by columns (a) and (b) of Table 1, a; approaches infinity as Xy goes to
zero, being undefined if Xy = 0. Hence, it erroneously suggests that X, is ex-
tremely valuable per unit of expectauon The same lack of economlc logic
occurs in (5), where ry approaches —100% as Xt goes to zero. For either model
to be useful, therefore, X; # 0 must be assumed. *

The above 1mp1101t1y assumes that V; and X have equal signs, ie., ViX>0.
If not, a; would approach — « and not ~ as Xy goes to zero. The RADR would
still approach —1 at odd dates, but would turn imaginary when t is even. More
generally, as suggested by (4) and column (c),a,t < 0 requires Vi and X to have
opposite signs. Clearly, this cannot be unless X is a mixture of contmgent
inflows and outflows, paying a positive a;mount in at least one state and a
negative amount in one or more other states.® With a; < 0 (corresponding to

VX<0) then ry is imaginary for even t so ry is economically meaningless. Thus,
the RADR model is not viable, but the CE model is.
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Unlike for 3-( , @ V4 which is close or equal to zero is unproblematic in the CE
model (columns (d) and (¢)). However, r; approaches infinity as Vy goes to zero,
suggesting that risk increases beyond all bounds, which is nonsense.?> Further-
more, as 1y is undefined for Vi = 0, bounds on a real-valued RADR are only
meanmgful if the CE factor is stnctly pos1t1ve (ie. VtXt>O)

Having discussed the cases where an a priori bound on at least one of at and 14
is problematic, consider next the uncomplicated column (f). If X4 = Xt in every
state, then X is deterministic, and Vy = X from (3). Moreover, a stochastic
Yt with E(Y¢) = Xt may also have that property, like when probabilities are
proportional to prices (Bghren and Ekern, 1981). In both cases, a; = 1 and
1y = iy from, respectively, (4) and (5), such that no risk adjustment is called for
in either model. If the single-period CAPM were used as an external valuation
model, the analogy would be that the value of a deterministic date 1 cashflow
equals that of a stochastic one with the same expectation if the latter’s beta
is zero.

In column (g), Vy/ Xt¢t> 1. As the denommator Xy is the present value of
a time t claim to X in every state, V4/Xi¢y > 1 implies that the stochastic X;
with expectatiog X is more valuable than its deterministic counterpart. That
may occur if Xt pays off relatively much in highly valued states. Loosely
speaking, ¢ is high if the total market payoff is low in that state, if investors
in aggregate put a high probability on state occurrence, or if they regard a
marginal dollar as particularly desirable if that state occurs. In the CAPM, the
explanation would be that the beta of X 1 is negative.

Because X; and V; have equal signs and differ from zero when VX > 1,
a real r; exists. Moreover, as a; > 1, then by (6) the riskfree rate exceedsthe nsk
adjusted one.

The final column of Table 1 assumes Vi/X; > 1, causing a; to exceed unity
by (1+1t)t—-1 and r; to be negative. Compared to column (g), an even stricter
bound is now put on Xi, as its present value must exceed time t expected
cashflow (i.e., a present deterministic dollar is worth less than a time t lottery
having the same expectation). Clearly, this cannot be if valuation includes risk
aversion and positive time preference. Despite some suggestions that a negative,
real RADR may be of interest (Joy and Grube, 1981, p.155), it therefore seems
fair to conclude that the case has insignificant practical importance. Corres-
pondingly, (1+it)t may safely be considered an upper bound for a4.

As to the general relationship between the two risk adjustment parameters
and the valuation of X4, it follows from (4) and (5) that

dayfory = Bryfdag)—1 = ay(~t/(141))) = —teLVyXIHIt L. (©6)

Assurmng that Vy and X; have equal signs and differ from zero, (6) is negative.
Hence, TSP consistent (at, 1) pairs always move in opposite dlrectlons if under-
lying time t valuation parameters change.
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Time Profiles of g and .

The previous section refers to 3 priori bounds at a fixed point in time,
offering no insight into the different problem of excluding particular time
patterns before estimation starts. The first part of this section discusses the
common practice of setting a; = a or 1y = 1 for every t, stressing the relationship
between the two. Finally, the nonintuitive properties of @ and 1 under cash
outflows is explored.

The constant RADR of 1 ={ 1 } implies from (5) that

XV = (408 t = 12,0, T o oo (N

Accordingly, expected cashflow to present value must be a geometric series with
parameter (1+r). As a meaningful RADR requires XtVt > 0 at every date (see
previous section), a positive r presupposes that Xt/V increases from one day to
the next, i.e., the relative X; change must exceed that of V *

Subst1tut1ng (7) into (4) a constant RADR corresponds to

a = (HQYHDY L (8)

With iy = i, this is the well known result of Robichek and Myers (1966): if r;
=1, then VRADR; = VCE; only holds if @ is a geometric series with the para-
meter (1+) / (1+r)

Comparing (7) and (8), a particular XtVt series causes a constant RADR, but
the corresponding shape of a depends on the riskfree rate as well. Thus X
exceeds unity and increases if Xt is more valuable than a riskfree claim to X,
being less than 1 and decreasing otherwise.

Consider next a time-independent CE-factor of a ={a }. As

Vt / Xt ¢t S S (9)

this unphcrtly assumes that the ratio between the present value of Xt and that
of a deterministic Xt always equals a. Moreover, @ ={ a; | means

1 = (l+ipa~™ P (10)

Thus, if i; = i, the 1 series decreases when a < 1, staying constant at ry = i for
a=1,

Reviewing, the pair { @ = 5a} r={r}} is only consistent in the trivial case of
Vi = ¢tXt and ¢ = (1+1) for all t, y1e1d1ng a = 1 and r = i. This may indicate
that a; and 1; reflect fundamentally different valyation properties. Still,
Robichek and Myers (1966, p.728) consider X; and XA equally risky if a;
= agqp (A > 0), suggesting that the CE-factor may serve as a proper indicator
of risk_adjustment. However, if instead the RADR were to be used as risk
pIoxy, Xt+A would be classified as less risky than Xt, as rg4A <14 by (10).

Clearly, in order for either @ or 1 to be flat over time, very restrictive assump-
tions with a weak intuitive backing are required. As shown elsewhere (Bghren
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1981), a CE model with @ = {a{ has the same weakness as the simulation pro-
cedure of Hertz (1964) and the related analytical model of Hillier (1963). On
the other hand, r = {r} in the RADR is shown to share the problems of the
X-based internal rate of return model. Thus, although a = {a}and = {1} Iely
on different assumptions about the periodic payoffs and market values of X, it
is not obvious which of the two is more restrictive. However, whereas the
problems of a constant RADR are very frequently stressed in the literature,
those of a constant CE-factor are not. In fact, the model comparison is usually
made by contrasting r = {r} to an unbounded a = { a; } . From our analysis,
that seems as unfair as criticizing @ = { @ } relative to an unbounded £ ={ r;}.

Finally, if X; is an outflow with negative X; and V, the properties of risk
adjustment parameters change radically. Differentiating (4) and (5) with respect
to Vt; N

aat/a’Vt = I/Xt ¢t O . e e e e e e e e (11)

aryfavy = (<KD KV WD-1>0 L (12)

Thus, a high TSP value per unit of )—(t is reflected by a large RADR and a low
CE-factor, such that if two outflows have the same X, the most valuable one
(i.e., the one causing the least cash drain in highly valued states) gets the strong-
est risk adjustment. Clearly, this counterintuitive relationship is simply due to
the way the two models are constructed. As VRADRy= Xy/(1+1y)t, this ratio
increases towards zero from below as r; rises. Correspondingly, value is less
negative the smaller is a; in VCE; = at%t/(lﬁt)t. Such conceptual problems
occur because, unlike TSP, the two models are not stated in explicit price and
quantity format,

In most capital budgeting projects, cash outflows in the first years are
followed by inflows later on. Consequently, a, is first a decreasing and subse-
quently an increasing function of cashflow value (ry increases, then decreases).
For financing projects, where inflows precede outflows, the opposite is true.
In either case, the problem of 3 priori disregarding some numerical values for
a¢ and 1; or certain time profiles for g and 1 gets still another dimension of
complexity.

Summary

One way of reducing estimation complexity is by bounding the estimators
a priori. This paper explores the validity of such an approach for the parameter
sets @ = fay} and 1 = |ryjof respectively the certainty equivalent (CE) and risk-
adjusted discount rate (RADR) models.

As neither model defines its inherent risk adjustments, a and 1 were speci-
fied from time-state-preference (TSP). Unlike the valuation principles previously
used, the time additive property of the TSP justifies a definition of a; and r¢
in terms of just time t parameters. Moreover, its careful description of multi-
period uncertainty brings out the economic content of the bounds quite clearly.
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If the analyst restricts his attention to certain general classes of @ and r
proﬁles particular assumptions are implicitly made about the cashflow X =
{ Xt} ,its expectation X =1 Xt } , and market values V = E A" (Xf) Additionally,
@ also depends on the pattern of riskfree rates i = {i;}. 'In general it is difficult
to specify the type of profile before estimation : starts, and intuition may not be
a too helpful guide. Although a const: 1t RADR is clearly less general than an
unbounded g, a more fair standard of comparison is the constant g = { g.} . The
latter involves different assumptions about the cashflow being valued, but they
may be as restrictive as those implied by 1 ={r}.

Besides focusing on certain general time profiles of a and 1, the numerical
values of the time t parameters a; and ry may also be restricted. However,
several cases exist where 3 priori bounds are either me‘f;fective or intuitively
troublesome. Firgt, bounding rq is useless, as the value of X in RADR is always
XO Second, if X; is a mixture of contingent inflows and outflows, ry may be
imaginary when t is even, a; being negative whatever the value of t. Third,

at is undefined and ry = —100% when X; = 0, a; approaching plus or minus
infinity as Xt goes to zero Clearly, that involves a meaningless economic inter-
pretation of a4 and r4.

In sum, these problems suggest that no 3 priori bounds are helpful when
X is close to zero, and that restrictions in the RADR model may only reduce
estlmatlon complex1ty when X and V; differ from zero and have equal signs.

If 3{ has the value of a nskfree cla1m then a; = 1 and 1; = it. When Xt
pays off relatively well in highly valued states, a; may exceed unity, causing
1¢ to be less than iy, Finally, a; > (1+ip)" and r; is negative when a present,
deterministic dollar is less valuable than a claim to a time t lottery having the
same expectation. The relevance of this extreme case seems insignificant, being
infeasible if market valuation is characterized by risk aversion and positive time
preference.

Capital budgeting projects typically have cash outflows in early years and
inflows later on. Counterintuitively, a; is first a decreasing function of cashflow
values, subsequently increasing when the cashﬂow changes sign (r; first increases,
then decreases) In such cases, the problem of a priori disregarding some numeri-
cal values for ay and 1y or certain shapes for g and 1 gets still another dimension
of complexity.

NOTES
1 1t is not true in general that when Xt approaches zero, V; also does. For instance, going
from investor a fo b, thefoxmer sprobability beliefs may cause hig subjective X?to be
closer to zero than b S (the state-contmgent payoffs X of X; are investor inde-
pendent; only probability beliefs in X; may vary). The market value Vi, however, does
not change from one investor to the next.

Xt >0, contingent outflows dominate inflows in value terms, yielding V; <0. For X
< 0, the converse is true,

Bounding Certainty Equivalent Factors 145



