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Abstract

Public or private allocation problems often involve numerous multiperiod decision
alternatives, conflicting preferences, or imperfect knowledge about decision-
makers’ wants. By placing only weak restrictions on permissible preferences, very
simple cashflow characteristics are used in this paper to select most-preferred pro-
jects for any individual within the general class. Judging from an empirical test, the
approach seems powerful in terms of simplifying complex capital budgeting
problems. For instance, presupposing that discount rates are positive and constant
over time, 26 out of 30 mutually exclusive projects could immediately be disre-
garded by every individual, regardless of what specific value is taken on by this
discount rate.

I. The Problem

Consider a set X of mutually exclusive capital budgeting projects, where any
project x€X is completely described by its cashflow z:t

x ={x(t)|x(¢)ER, 0<i<T}.

Here, { =0 denotes the present, 7" is the horizon of the most long-lived project,
R is the set of real numbers, and any z(f) may be deterministic or stochastic.
With ¢ €X and b € X denoting two projects with cashflows @ and b, respectively,
the choice between them generally depends on the criterion used.

* The paper has benefited from the constructive comments of Karl Borch, Steinar
Ekern, Kéare P. Hagen and a referee.

1 This paper deals only with mutually exclusive projects, as any choice between alter-
natives can be formulated in this way. Even if every project is independent of any other,
the problem can be transformed into one of choosing between mutually exclusive projects
by appropriately redefining the alternatives.
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In the certainty case, consider an economy where consumer preferences and
production technology satisfy the standard convexity assumptions. Debreu
(1959) showed that if discount rates are interpreted as ratios between com-
modity prices at different points in time, and if the projects @ and b do not
affect equilibrium prices, a competitive equilibrium ensures that:

T T
a>b<>NPV (a, By)= f a(t)e 7@ dt > NPV (b, Ry)= J b(t) e @ d. (T)
0 0
Here, NPV denotes net present value, v(f)=e~*( is the discounting function,
r(t) is the discount rate used for discounting from ¢ back to zero, and Ry is
the set of such rates from 0 to 7't Thus, every utility-maximizing individual
ranks production opportunities as well as consumption paths according to
their net present value, ultimately selecting the one with the highest NPV.

Dropping the assumption of a general, competitive equilibrium, a perfect
capital market is nevertheless sufficient for separating consumer preferences
from project evaluation; see Fisher (1930). Thus, once more, individual tastes
are irrelevant, NPV can be used for ranking, and r(f) equals the market rate.
However, when lending rates differ from borrowing rates, Hirshleifer (1958)
showed that lending rates should be used during periods when the investor is
a lender, whereas borrowing rates apply when he prefers to be a borrower.

When no market assumptions are made, a valid use of NPV presupposes
more than just convex preferences; cf. Koopmans (1960) and Williams &
Nassar (1966). Several behavioral axioms must be satisfied if (I) is to ensure a
utility-maximizing ranking, and r(f) becomes a subjective concept, expressing
a personal time preference.

When cashflows are stochastic, the general equilibrium results of the deter-
ministic case still apply under perfect and complete markets for state-
contingent claims, although the NPV is now found by integrating over states
as well as time; see Hirshleifer (1970). Recently, however, Fama (1977) showed
that in a capital market where assets are valued in each period according
to the capital asset pricing models of Sharpe (1964), Lintner (1965) and
Black (1972), the market value of a multiperiod, stochastic cashflow may be
expressed as the NPV of the expected cashflow, using risk-adjusted discount
rates. Moreover, in ad hoc uncertainty models based on NPV, similar risk
adjustments are made through the determination of Ey; see Bierman & Smidt
(1975) and Lewellen (1977). Thus, even under uncertainty, (I) is still valid for
project selection, if a(t) and b(t) are interpreted as expected values and it is

1 Letting o(s) denote the instantaneous rate from s to s-+ds, v(f) may be stated alter-
natively as '

t
o(t) = ¢ D = oxp { - fo o(s) ds}

Thus, »(¢) =1/ j'g o(s)ds, which may be interpreted as an “average” of the instantaneous
rates from 0 to ¢.
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kept in mind that the discounting function involves adjustments for time as
well as risk.

Now, in the market contexts of Debreu, Fisher or Fama, the NPV criterion
yields a correct ranking for any investor if the appropriate market parameters
are used for discounting in (I). In the three remaining cases, however, a
straightforward use of NPV is more problematic.

First, in an imperfect capital market, the appropriate discount rates cannot
be observed until the preferred allocation has been chosen, and the resulting
ranking is only valid for individuals who follow exactly this borrowing/lending
path. Second, when the validity of NPV is based on behavioral axioms only,
the discount rates are subjective and cannot be observed in the market.
Consequently, ranking according to a particular R, applies only to individuals
with that specific preference structure. Third, in ad hoc uncertainty models, R,
is both project and investor-specific, as the discount rates reflect project risk
as well as risk attitude. Therefore, in all three cases, the numerical values
of 7(t)€ R, must be completely specified before (I) is used. This in itself may
offer a difficult estimation problem. Furthermore, after R, has been estab-
lished, the ranking tends to be relevant for only a very limited set of individuals.

Due to these problems of data availability and ranking generality, an alter-
native approach will be suggested which does not require a prespecified set
of discount rates. Nevertheless, it is consistent with NPV, it reduces that
method’s inherent estimation problem and increases the generality of the
ultimate ranking.! For expositional convenience, we consider only deter-
ministic projects and the preference axiomatic basis for NPV. By appro-
priately reinterpreting «(¢) and Ry, every conclusion is valid for any of the
remaining cases.?

Next, three classes of preference orderings are discussed, after which so-called
time dominance properties of a cashflow are defined in Section III. The
major results are presented in Sections IV and V, where NPV-consistent rank-
ing rules are derived by relating classes of preference orderings to time
dominance properties. After an empirical test in Section VI, the findings are
summarized in the final section.

II. The Discounting Function

Consider the discounting function v(f), which is assumed to have continuous
derivatives of first and second order. Three different classes of such functions
are defined in the following.

1 Under uncertainty, mean/variance, mean/semivariance. and stochastic dominance
criteria are used to resolve such issues; ef. Markowitz (1959), Porter (1974) and Bawa (1975).
However, either approach delimits its attention to risky decision problems with a one-
period horizon.

2 Under uncertainty, it must be assumed that every project belongs to the same risk
class, ensuring that when o and b are compared, the expected cashflows are discounted by
the same set of risk-adjusted discount rates; cf. Fama (1977).
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Class 1. Discounting functions that are decreasing functions of ¢ This class
s consists of any v(f) where

ﬁ(t)=g§< 0, 0<i<T.

Class 1 contains all discounting functions that exhibit positive time preference,
ie. a dollar at time s is preferred to a dollar at time s +A(A>0). The set of
functions belonging to this class is denoted V1.

Class 2. Discounting functions that are decreasing and convex functio

of ¢. In this class, denoted V2, it is required of every v(f) that
oo

3(6) < 0, 5(0) =3

>0, 0<t<T.

Thus, for any discounting function to be a member of the second class, it

must exhibit positive time preference (as in V1) and decrease with ¢ in & convex
fashion.

Class 3. Discounting functions with a positive, constant discount rate.
Class V3 contains functions of the type

o) =e"t (r>0)1
Reviewing the three classes, the relationship between them is seen to be
Vic Vic VL (I)

Here, V! contains the largest and V3 the smallest set of functions, with V2
somewhere in between. In other words, V! makes the weakest and V3 the
strongest assumptions about the shape of admissible discounting functions.
Having classified investor preferences by means of these three classes, we
now turn to the opportunity set by defining some cashflow characteristics.

III. Time Dominance

Consider two cashflows ¢ €X and bEX, as defined previously. Then, @ is said
to dominate b(aDb) by firsi-order time dominance (1TD) if

F(s) = G(s) — G(s) = f a(t)dt — J b(t)dt=>0 for any s,
0 0

0<s<T, and with strict inequality for some s. (I1La)

1 Tt follows from the definition of r(f) in footnote 1, p. 46, that o(f) = —5(¢)p(t) and
B(8) = —v(t) @(t) — 9(t)e(t)- As (t) >0, any discounting function in V? has positive instan-
taneous rates for every &. Moreover, when #(¢) <0, the condition o(¢) <0 is sufficient, bub
not necessary, to ensure v(t) =0 for every &. Thus, V2 is larger than the class of functions
with positive, nonincreasing rates of marginal time preference. Finally, inserting the
constant g(s) =0 in the definition of 7{t) demonstrates that 73 contains any discounting
function with positive, constant instantaneous rates.
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Moreover, a is said to dominate b(aDb) by second-order time dominance (2T D) if

(1) FYT)>0, and
(2) Fi(s)=Gh(s)—G3(s)= Jﬂ ) Gi(t) dt— ‘r Gt)dt=0 for any s,
0 0

0<s<T, and either (1) holds as a strict inequality or (2) holds
as a strict inequality for some s. (IITb)

Generally, a is said to dominate b(aDb) by n’th order time dominance (nTD) if
(1) FYT) >0,
) FXT) >0,

(n—1)F*1(T) >0, and
(n) F™(s) =[5 F>(¢t)dt=>0 for any s, 0<s<T,

and either some of (1) to (r—1) holds as a strict inequality or (n)
holds as a strict inequality for some s. (IIc)

Definition (IIIc) applies to every integer » larger than or equal to unity,
defining Fo(s)= G3(s) —Go(s) =a(s) — b(s). Thus, (IIla) and (IIIb) are special
cases of (IIIc), with n=1 and n=2, respectively.

Verbally stated, Fi(s) is the cumulative cashflow of @ less the cumulative
cashflow of b from time O up to time s. Correspondingly, F2%(s) denotes the
cumulative of F(s), F3(s) is the cumulative of F'%(s), ete. Moreover, it is easily
seen that 1TD implies 2TD, but not vice versa. Consequently, if @ dominates b
by 1TD, it will always dominate b by 2TD. However, aDb by 2TD does not
imply that aDb by 1TD. Generally,

aDb by »TD =aDb by ¥TD, =n=1,2,3, ..; integer k>n. (IVa)

Letting D{nTD}€X denote the set of dominating projects according to
criterion #TD, D{3TD} will therefore be a subset of D{2TD}, which in turn
is contained in D{1TD}.! Generally,

D{kTD} < D{nTD} n=1,2,83, ..; integer k=>n. (IVDb)

Thus, 2TD is a stronger criterion than 1TD, as more cases can be ordered
according to the former.

IV. Most-Preferred Projects and Time Dominance

In this section, the three classes of discounting functions are related to the
time dominance properties of cashflows, thereby yielding ranking rules which

1 When D{nTD} =X, the term “dominating projects” may seem semantically inappro-
priate, as there is no project being dominated. However, it will be seen later that if such a
case occurs, the value of the proposed procedure is zero. '
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are consistent with NPV, but which do not require a full specification of

discount rates. The proofs of the following propositions are provided in
Appendix 1.

Proposition 1. Let the discounting function v(t) be a member of V1. Then every
individual prefers a to b if a dominates b by first-order time dominance.

Thus, if a dollar today is preferred to one tomorrow, a will always be
better than b if aDb by 1TD, i.e. if the cumulative cashflow of o is at least
as large as that of b, and strictly larger at least once. Given the set X of
mutually exclusive projects, the most-preferred investment for every v(t) € V*
will always be a member of D{1TD}, and those x¢D{1TD} need not be
considered by anyone.

The advantage of Proposition 1 is its nonrestrictive assumptions about
admissible discounting functions. The obvious weakness is that the set
D{1TD} may be large relative to X, so that the decision problem is simplified
to only a very limited extent.

Proposition 2. Let the discounting function v(t) be a member of V2. Then every
wnvestor prefers a to b if a dominates b by second order time dominance.

Compared to Proposition 1, a stronger ranking criterion is obtained at the
expense of being relevant for a smaller class of investors. The same relation-
ship holds between Propositions 2 and 3.

Proposition 3. Let the discounting function v(t) be a member of V3. Then every
investor prefers a to b if a dominates b by n’th order time dominance, n=3 or 4
or jor ...

Of course, Proposition 3 is also valid for n=1 or 2, as both 1TD and 2TD
imply »TD for n>3. Having restricted admissible preferences to V3,
however, as strong a ranking criterion as possible should be used. For the
same reason, 1TD is not used in Proposition 2.

There is a remarkable thing about Proposition 3 which has no parallel in the
theory of stochastic dominance. Going from Proposition 1 through 2 to 3,
more powerful criteria are obtained by successively delimiting the class of
admissible discounting functions. Having reached V3, however, the power of
the criterion can be increased freely (in TD terms) without having to place
stronger restrictions on preferences. Therefore, a dominating set of any order
will always contain the most-preferred project for any discounting function
with constant discount rates. It should be noted that the assumption of
constant discount rates is very frequent in the theory of capital budgeting and
finance; cf. Bierman and Smidt (1975), Hirshleifer (1970) and Fama and
Miller (1972). In fact, it is often the only case considered.

Scand. J. of Economics 1980
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Next, some simple examples are given, using discrete cashflows only.

Example 1. Let a=(—1, —1, 3, 2, 3) and b=(-1, -2, 3, 3, 2), where the
first vector element is at ¢ =0 and the last at =4, Then, Gz=(—1, -2, 1, 3, 6)
and Gi=(-1, —3,0, 3, 5), giving F*=(0, 1,1, 0, 1). Thus, aDb by 1TD, and
every individual with positive time preference prefers a to b.

Evample 2. Let a be as in example 1, and b=(—2, 0, 4, 1, 2). Then,
B=(-2, —2,2,38,5), F*=(1,0, —1, 0, 1), and there is no 1TD. However,
FY4)>0and F?=(1,1,0,0, 1), and aDb by 2TD. Consequently, every investor
whose discounting function is a decreasing and convex function of # will
prefer a to b.

Example 3. Let a still be as in example 1, and b=(—2,0,4.1, 1, 2). Then
Gl=(—2, —2,21,8.1,5.1), F1=(1,0, —1.1, —0.1, 0.9) and F?=(1, 1, 0.1,
—0.2, 0.7), so there is neither first nor second-order time dominance. However,
F1(4)>0, F*(4)>0and F3=(1, 2, 1.9, 1.7, 2.4) contains only positive elements,
so that aDb by 3TD. This means that for every discount rate r, 0 <r<co,
NPV(a, r)>NPV(b, r). Alternatively stated, the NPV of the differential
flow (@ —b) is positive for every discount rate greater than zero, and the flow
(z —b) has no positive internal rate of return.

V. Most-Preferred Projects and Normalized Time Dominance

The TD criteria have a serious drawback when it comes to their ability to
minimize the size of the dominating set. As can be seen from their definitions
as well as from the numerical examples, a large project cannot dominate a
small one, when project size is measured in terms of initial investment. In
other words, when a(0)<b(0), @ can never dominate b by any TD criterion,
regardless of the remaining cashflow elements of a and b. For instance, if
a=(—1,1000,1000)and b=(—0.9, 0, 1), the projects cannot be ranked. Thus,
if no other project dominates them, they will both appear in the dominating
set. This section introduces normalized time dominance (NTD) criteria for
the purpose of ranking such projects.

The undiscounted value of project x€X is Gi(T), ie. the total cashflow
generated during its life. It will be assumed that Gi(T)>0 for every z€X,
i.e. that the total cash inflows exceed the total outflows. The normalized
cashflow £ is then defined as

&= {&(t) = 2()[0(T)|£6)ER, 0<¢<T}.

For instance, in the discrete case, if z=(—1,3,8), then G}T)=10 and
#=(-0.1, 0.3, 0.8). Furthermore, the following definitions of cumulative,
normalized flows are needed:
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sy =d(s), Go(s)= b(s),
Pos)= Gos) —Gols),

and for any integer n=1,
Gis)= J s G-Ynde, Gis)= L &Gy dt, Frs)= f sz?m—l(t) dt G(s) — G2(s).
0 0

From these definitions, the céunterpa;rt of (IIIc) can be established:
o is said to dominate b (aDb) by n’th order normalized time dominance

(n NTD) if
1) T) =0,
@) F¥T) =0,

(n—1) F~yT)>0, and
W)  Pvs)=f5 P~t)di>0, foranys, 0<s<T,

.and either some of (1) to (r—1) holds as a strict inequality or (n) holds as a
strict inequality for some s. (V)

Here, (1) is redundant, as Gi(T)=Gi(T)=1 by definition. Letting
D{nNTD}€X denote the set of dominating projects according to criterion
aNTD, it follows that

D{kNTD} < D{nNTD} ==1,2,3,..; integer k=>n. (VI)

Thus, as was found in the case of nonnormalized time dominance (TD), the
higher the order of the NTD, the stronger it is. The proofs of the following
propositions are given in Appendix 1.

Proposition 4. Let the discouniing function v(t) be a member of V1. Suppose that
GL(T)>GYT)>0 and that NPV (b, By)>0. Then every investor prefers a to b
if a dominates b by first-order normalized time dominance.

Proposition b. Let the discounting function v(f) be a member of V2. Suppose that
GL(T)=G4(T)>0 and that NPV (b, Br)>0. Then every tnvestor prefers a to b
if a dominates b by second-order normalized time dominance.

Proposition 6. Let the discounting function v(t) be o member of V3. Suppose thai
GYT)=>GY(T)>0 and that NPV (b, By)>0. Then every investor prefers a to b
if a dominates b by n’th order normalized time dominance, n=3 or dorSor ...

Each of the above propositions presupposes that NPV(b, R;)>0. This
seems to be a very strange assumption, as the whole idea behind the criteria
is to establish rules that do not require fully specified discount rates. However,
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it will generally hold that if GL(7") > G5(T) >0 and ¢ Db by nNTD, =1, 2, 3, ...,
then either NPV (b, E;) <0 or 0<NPV (b, R;) <NPV(a, R,)for every »(¢) within
the appropriate class. In either case, project b should be rejected. Consequently,
the normalized time dominance criteria can be used without @ priori knowledge
of the numerical values of discount rates.

Because of Propositions 4, 5 and 6, there are now two dominance criteria
for each set of discounting functions, a nonnormalized criterion and a nor-
malized one. For instance, if v(¢) € V2 and the total cashflow of a is at least as
large as the positive total cashflow of b, the dominating sets D{2TD} and
D{2NTD} will both contain the most-preferred project for any w(t)€ V2
provided that there is at least one project in X that has a nonnegative NPV.!
It is easily seen that if aDb by »TD, it does not follow that aDb by nNTD,
and wvice versa. Consequently, as the two criteria provide different sufficient
conditions for a to be preferred to b, the most-preferred project must be con-
tained in the infersection of the two dominating sets, D*{n}, defined as

D*{n} = D{nTD}n D{xNTD}. (VII)

Thus, by combining the two criteria and considering only projects that
appear in both dominating sets, the size of the ultimate dominating set is
minimized. This point is illustrated in the empirical study presented in the
next section.

VL An Empirical Test

In order to illustrate the criteria and evaluate their ranking power, 30
capital budgeting projects taken from Weingartner (1963) are presented in
Appendix 2. As they originally have differing implementation dates, the
cashflows of the projects starting after =0 have been moved backwards in
time, ensuring that =0 is the common starting date. Moreover, some of the
cashflows have been cut, allowing for a 10-year planning horizon. Nevertheless,
the 30 projects still differ in scale, cashflow and internal rate of return, and it
is far from obvious what the best project should be for a given class of
individuals.

The dominating sets are reported in Table 1.2 It is seen from the first column

1 Because the “do nothing” alternative with only zero cashflow elements is assumed to
be included in X, this condition is automatically satisfied, as the NPV of that project is
Zero.
2 As the TD and NTD criteria are very easily programmed, the tests were performed by
computer. In the majority of practical cases, however, X contains considerably less than
30 mutually exclusive projects. Then, the simple cashflow accumulations are more
efficiently performed by hand or calculator. '

Notice the simplicity of this procedure versus one of calculating NPVs of every project
with every admissible set of discount rates. In principle, of course, the latter approach is
infeasible, as the set of discount rates is infinite. Eiven when computerizing the test and

using & finite subset of rates, such a procedure seems clearly inferior in cost benefit
terms.
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Table 1. Dominating sets from 30 capital budgeting projects, based on various

time dominance criteria
[4

PDominance criterion

% Non-normalized Normalized Combined

& time dominance, giving time dominance, giving criterion, giving

8 D{rTD} D{nNTD} D*{n}
1 {1,5,7,8,9,14,16,19, 23,24} {5,7,8,9, 14, 22, 23, 24, 28} {5,17,8,9, 14, 23, 24}
2 {1,5,7,8,9, 14,16, 19, 23, 24} {5,9, 14, 23} {5, 9, 14, 23}

>3 {1,5,7,8,9,14, 16,19, 23, 24} {5, 9, 14, 23} ' {5,9, 14, 23}

of nonnormalized TD that under an assumption of positive time preference,
the decision-maker may consider only 10 of the 30 projects. Moreover, this
dominating set cannot be reduced by placing more restrictions on v(t) and
applying a stronger ranking criterion. For instance, if 10TD is used, the domi-
nating set is still identical to D{1TD}. Referring to expression (IVDh), the
present example is the limiting case of D{nTD}=D{1TD} for any integer
n=1.

Turning to the results of normalized time dominance in the second column,
the number of projects relevant for each investor’s ultimate choice drops from
9 to 4 when going from INTD to 2NTD, and remains constant thereafter.
Thus, in this case, NTD yields a smaller dominating set than TD, particularly
when v(t) belongs to V2 or V3 (4 versus 10 projects).

The dominating set of the combined criterion, D*{n}, appears in the third
column. First, notice that D{1TD} is not a subset of D{INTD} or vice versa.
Second, going from 1TD through INTD to the first-order combined criterion,
the number of elements in the dominating set drops from 10 through 9 to 7.
Moreover, as D*{n} always contains the most-preferred project for any
admissible v(t), anyone may delimit his attention to 7 projects if his v(¢) € Vi,
and to 4 projects if v(t) belongs to V2 or V3. Compared to the initial set of 30
projects, the time dominance tests have simplified the problem to a remarkable:
extent. . _

In sum, merely by examining simple cashflow properties, the decision-
maker does not have to specify his preferences relative to X, but only relative
to the generally smaller D*{n}. Consequently, the benefit of this approach is
greater, the fewer the elements in D*{n}.

If D*{n} contains only one project, the problem is solved. Otherwise, a local
specification of v(t) is called for, either explicitly or implicitly.! In that case,
which is probably the most common one, a word of caution may be in order.

1 An implicit specification would be e.g. & case where the final choice is made on the basis.
of financial policy restrictions.
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If, due to a misspecified »(f), a project is selected from D*{n} which is not
the best one (according to the true v(f)), this alternative may be less preferred
than several projects not included in D*{n}. In other words, for any specific
v(t), the corresponding D*{n}, containing say m projects, is generally not
identical to the m projects in X with the largest NPV (although, of course,
the project with maximum NPV is always in D*{n}).

VII. Summary

This paper has established time dominance criteria for choice between deter-
ministic or stochastic capital budgeting projects. Three sets of general
assumptions were made about discounting functions, the strongest one being
that a positive, constant discount rate is used. As to project characteristics,
nonnormalized (TD) as well as normalized time dominance (NTD) criteria
were constructed, utilizing cashflow properties that are very easily derived.

Relating the TD and NT'D criteria to assumptions about discounting func-
tions, we found sufficient conditions for any decision-maker to prefer one
project to another, allowing for the construction of dominating sets. Due to
a particular relationship between TD and NTD, the intersection of their
respective dominating sets will generally contain the smallest number of
projects.

Finally, the various criteria were tested on 30 deterministic projects.
Presupposing only that the decision-maker prefers a dollar today to a dollar
tomorrow (whatever the specific set of positive discount rates), more than
two thirds of the projects could be eliminated. Under two more restrictive
sets of investor preference assumptions (the strongest being a positive, constant
discount rate), only four out of 30 projects had to be evaluated by any
investor.

Judging from this test, the criteria seem powerful in terms of simplifying
complex capital budgeting problems. To the extent that the findings have

general validity, the approach may effectively reduce the long-debated
problem of discount rate specification.

Appendix 1. Proofs of Propositions 1-6

Proposition 1
From (I) it follows that a is preferred to b if and only if:

H= f:a(t)v(t)dt— f Tb(t)v(t)qlt= f T(a(t)—b(t))v(t)dp 0.

0 0

Integrating by parts,

T

H =F1(t)v(t)l-— LTFl(t)ai(t)dt'=F1(T) o(T)— fOTFl(t)e}(t)dt.
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The discounting function v(f) is positive for every #, and ¥(f) <0 by assump-
tion. Consequently, H>0 if aDb by 1TD as defined in (IIIa) or (IILc).

4

Proposition 2

Using the terminology from the proof of Proposition 1, two integrations by
parts yield:

H=FYT)o(T)— F(T)5(T) + f TF2(t) (8) di.
0

By assumption, »(7")>0, (7T)<0, ;3(:5)20. Consequently, H is positive if
aDb by 2TD as defined in (IIIb) or (I1lc).

Proposition 3

H=c¢T[FYT)+ rF¥T)+... + " 'FMT)]+ f TF”(t) e~ dt,
0

As r is positive by assumption, H is positive if Db by n"TD,n=3or4or5or...,
as defined in (I1lc).

Proposition 4

According to (I), a necessary and sufficient condition is

j Ta,(t)'v(t) dt > f ' b(t) o(t) dt.

0 0

Multiplying by Gi(T)/GiX(T) on the left-hand and by Gi(T)/GH(T) on the
right-hand side, the condition is

T T
Gy(T) fo a(t) v(t) di > GH(T) fo b(t) v(t) dt.

Multiplying through by the positive 1/G3(7)

(T [*
Gy(T) Jo

T
a(t) v(t) di > f b(t)v(t) dt.
0

After one integration by parts, the condition is

1 T T
ggg; [v(-’l")— fo é&(t)ﬁ(t)dt] > [v(T)— fo Gi(t) o(t) dt].

By assumption, the right-hand side is positive (NPV(b, R;)>0), Go(T) = GL(T),
and 9(t) <O for all ¢£. Then, the condition holds if ¢Db by INTD as defined
by (V).
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Proposition 5
Integrating by parts once more on the condition from the preceding proof,

Ga(T) , T .
G%(T) [’U(T) - G’%(T) ’U(T) + J;) @ﬁ(t) ‘D(t) dt:l

> ['U(T)— G3(T)o(T) + f Té%(t) o(t) dt] .
0

By assumption, the right-hand side is positive, GL(T)=>Gi(T), ¥(t)<0 and
v(t) >0 for all t. Then, the inequality holds if Db by 2NTD as defined by (V).
Proposition 6

After n integrations on (I) with v(f)=e~", the condition is

Gu(T)

G%(T)— {6"71'[1 + ?‘ég(T) 4 rgég(T) + ...+ Tn—l@g(T)] + g J; ég (t) e—rt dt}

r
>e ™ [1+rGH(T) + P@UT) + ...+ GHT)] + "”f Gyt e di.
0
By assumption, the right-hand side is positive, G5(T") = G5(T'), and r>0. There-

fore, the proposition holds if aDb by nNTD as defined by (V).

Appendix 2. 30 capital budgeting projects, taken from Weingartner
(1963, p. 180), somewhat adjusted.

Positive

Flow in year internal
Project rate of
number 0 1 2 3 4 5 6 7 8 9 10 return

—-100 20 20 20 19 19 18 16 14 11 6 .12

1

2 -100 20 18 18 18 18 14 14 14 14 14 .11
3 —100 15 15 15 15 15 13 13 13 13 13 .07
4 -100 20 6 11 1 16 5 14 18 3 20 .03
5 ~100 — 60 — 60 80 74 66 56 44 30 14 0 .13
6 —200 25 256 26 25 256 25 26 25 25 25 .04
7 — 80 20 20 20 19 17 14 10 6 2 0 .14
8 — 60 — 30 ~ 10 45 34 25 16 12 8§ —-20 21 .09
9 —-120 25 25 30 35 30 25 20 15 10 5 .16
10 —100 18 17 15 12 8 —-10 18 17 15 12 .04
11 -150 20 20 20 20 20 20 20 - 20 20 20 .06
12 —100 20 18 16 14 12 10 4 -20 20 18 .03
13 —160 - 76 - 756 60 60 65 50 44 38 36 35 .05
14 - 50 —-100 -175 50 55 60 656 60 50 40 30 .05
15 —100 ~150 —100 10 20 30 40 60 60 60 60 None
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Appendix 2. (Cont.)

’ Flow in year

Positive
internal

Project
number 0 1 2 3 4

rate of
5 6 7 8 9 10 return

16 - 95 — 60 47 42 37 31 24 18 13 9 8 .10
17 —-175 50 45 35 25 10 —60 45 35 25 10 .06
18 - 250 45 45 40 30 25 20 15 10 —40 40 None
19 — 75 — 75 — 40 40 40 40 356 35 30 25 15 .06
20 —180 20 12 16 13 11 19 17 12 15 19 None
21 — 80 18 16 14 12 10 4 16 14 10 6 .09
22 — 85 20 20 16 15 13 10 7 3 0 0 .06
23 —-270 —-100 125 115 105 80 60 35 25 15 10 .12
24 - 40 i5 13 9 7 5 2 0 0 0 0 .10
25 - 50 10 10 9 7 4 —-14 9 9 8 6 .03
26 - 200 60 40 30 15 —-25 —-25 50 40 30 20 .03
27 — 70 -15 13 11 10 9 7 6 4 3 2 .03
28 -335 60 70 80 70 55 40 25 15 5 0 .06
29 — 295 40 45 45 40 35 30 25 20 15 —75 None
30 —140 20 20 18 16 14 11 8§ —25 18 18 None
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