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Abstract

This paper analyzes the interaction between internal agency problems within �rms
and external search frictions when workers have private information. Firms use wage
contracts to motivate workers. In addition, wages are also used to attract workers.
The resulting allocation of resources satis�es a modi�ed Hosios rule. Then, we use
the model to analyze the e¤ect of changes in the macroeconomic variables on the
wage contract and the unemployment rate. We �nd that private information may
increase the responsiveness of the unemployment rate to changes in productivity. The
incentive power of the wage contracts is positively related to high productivity, low
unemployment bene�ts and high search frictions.
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1 Introduction

There exists a large literature analyzing the e¤ects of search frictions in the labor market.

In this literature, �rms are typically modeled in a parsimonious way, with exogenous output

per worker. In particular, agency problems between workers and �rms are ignored. The

focus is thus solely on the e¤ects of search frictions on the �ows into and out of employment.
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In the present paper, we allow a �rm�s output to depend on the wage contracts �rms

o¤er their workers. A worker�s output depends on both her e¤ort and a match-speci�c

component. The �rm observes total output, but cannot disentangle output into its di¤erent

components. It acts as a principal and chooses a wage contract that maximizes pro�ts given

the information constraints. Our aim is to analyze the interplay between search frictions in

the market place and agency problems created by workers�private information.

In competitive search equilibrium, search frictions and agency problems interact because

of the amount of "rents" that accrues to the worker. A worker�s private information gives her

an information rent, which is larger the closer the wages are linked to workers�output. When

the �rm sets the wage contract, it trades o¤ incentives for the worker to provide e¤ort and

rent extraction from the worker. However, when there are search frictions in the labor market

and �rms compete for workers, more rents to the worker also bene�t the �rm as it speeds up

the hiring process. Hence, it is less costly for a �rm to provide workers with incentives when

operating in a competitive, frictional market rather than in a non-competitive or frictionless

market.

We show that the resulting search equilibrium, which we refer to as generalized com-

petitive search equilibrium, has a simple form. The agency problem and the wage posting

problem can be disentangled into two separate maximization problems. The solution to

the �rms�problem satis�es a modi�ed Hosios rule that determines the constrained e¢ cient

resource allocation. When the information constraints are tight in a well-de�ned sense, the

optimal wage contract prescribes that a large share of the match surplus is allocated to the

employees. As a result, the pro�t will be lower, and fewer resources are used to create new

jobs as compared to the equilibrium without agency problems.

We then analyze the e¤ects of changes in the macroeconomic environment on the wage

contract and the unemployment rate. First, we analyze the e¤ects of negative productivity

changes where all �rms are hit equally hard. Such a negative shock tightens the constraints

imposed by the workers�private information, and the worker�s share of the match surplus

increases. Therefore, the unemployment rate becomes more responsive to such shocks than

in the standard search model. If the recession is caused by changes in the information

structure, or if worker e¤ort is more crucial after a negative change, the responsiveness of
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the unemployment rate to negative shocks is further increased and may be arbitrarily large.

Our model can thus contribute to the debate following Shimer (2005) and Hall (2004) who

document that �uctuations in the unemployment rate predicted by the model in response to

observed productivity shocks are much smaller than actual �uctuations in the unemployment

rate, as wages in the model absorb much of the shock. Note also that our analysis indicates

that a counter-cyclical sharing rule, where workers receive a larger share of the surplus after

a negative shock, may be an optimal response to information problems between employers

and employees.

We also �nd that a positive productivity shock or a fall in unemployment bene�ts both

tend to increase the incentive power of the wage contract. In both cases, the shift increases

the average match surplus. As a result, there are more rents available in the relationship

and therefore also room for more high-powered incentive contracts. Similarly, an increase in

search frictions also tends to increase the incentive power of the wage contract.

Our private information model builds on the procurement model by La¤ont and Tirole

(1993) and its adoption to a frictionless labor market by Moen and Rosén (2006a). As the

emphasis in the present paper is on the interplay between search frictions and wage contracts,

its analysis di¤ers radically from that of Moen and Rosén (2006a).

In a related model, Faig and Jerez (2005) analyze a retail market with search frictions

when buyers have private information about their willingness-to-pay. Although their paper

studies private information in a competitive search environment, their model and its emphasis

di¤er from ours. They focus on welfare analysis and abstract from moral hazard problems.

They do not derive the modi�ed Hosios condition, nor analyze the impact of macroeconomic

variables on sharing rules and incentives.

Shimer and Wright (2004) consider a competitive search model where �rms (not work-

ers) have private information about productivity and workers have private information about

e¤ort. They show how private information may distort trade, thereby increasing unemploy-

ment. However, the mechanism in their paper di¤ers from ours. We focus on the division

of the match surplus between workers and �rms as an instrument to mitigate the ine¢ cien-

cies caused by private information, summarized in the modi�ed Hosios condition. This is

absent in Shimer and Wright which instead focuses on the direct e¤ect of the ine¢ ciencies
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created by two-sided private information on unemployment and vacancy rates. Guerrieri

(2007) studies the welfare e¤ects of including non-pecuniary aspects of a match which are

private information to workers. She �nds that the resulting allocation is ine¢ cient out of

steady state.

Several recent studies seek to make the search model consistent with Shimer and Hall�s

empirical �ndings. In Kennan (2007), workers and �rms bargain over wages once they meet.

Firms have private information in booms, but not in recessions, and thus earn information

rents in booms. This increases the pro�ts in booms and thus also unemployment volatility.

Nagypál (2006) and Krause and Lubik (2007) show that on-the-job search in a matching

model may amplify the e¤ects of productivity shocks on the unemployment rate. Menzio

(2005) illustrates that �rms with private information may �nd it optimal to keep wages �xed

if hit by high-frequency shocks. In Rudanko (2008), the e¤ect of risk averse workers and

contractual incompleteness on volatility is explored. Reiter (2007) shows that the respon-

siveness of the unemployment rate to productivity shocks may be increased if one allows

for technological change that is embodied into the match. Gertler, Sala and Trigari (2007)

explain wage rigidity by staggered wage contracts, among other things. For an extended

survey of this literature, see Mortensen and Nagypál (2006).

Our model is also related to the literature on e¢ ciency wage models (e.g. Weiss, 1980;

Shapiro and Stiglitz, 1984). Some of these papers examine the comparative static properties

of e¢ ciency wage models (Strand, 1992; Danthine and Donaldson, 1990; Ramey and Watson,

1997; MacLeod, Malcomson and Gomme, 1994; MacLeod and Malcomson, 1998). In a static

model, Rocheteau (2001) introduces shirking in a search model and shows that the non-

shirking constraint forms a lower bound on wages.

The paper is organized as follows: Section 2 presents the model. In section 3, we study

the full-information benchmark. In section 4, we introduce and characterize the generalized

competitive search equilibrium. In section 5 we apply the model and analyze the e¤ects of

macroeconomic variables on the wage contract and the unemployment rate. Section 6 o¤ers

�nal comments.

2 The model
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The matching of unemployed workers and vacancies is modeled using the Diamond-Mortensen-

Pissarides framework (Diamond, 1982; Mortensen, 1986; Pissarides, 1985) with competitive

wage setting. The economy consists of a continuum of ex ante identical workers and �rms.

All agents are risk neutral and have the same discount factor r. The measure of workers is

normalized to one. Workers leave the market at an exogenous rate s and new workers enter

the market as unemployed at the same rate. Abandoned �rms have no value.

Let u denote the unemployment rate and v the vacancy rate in the economy. Firms

are free to open vacancies at no cost, but maintaining a vacancy entails a �ow cost, c.

The number of matches is determined by a concave, constant return to scale matching

function x(u; v). Let p denote the matching rate of workers and q the matching rate of

�rms. The probability rates p and q can be written as p = x(u; v)=u = x(1; �) = ep(�)
and q = x(u; v)=v = x(1=�; 1) = ~q(�), where � = v=u. We assume that lim�!0 p(�) = 0

and lim�!0 q(�) = 1. The matching technology can thus be summarized by a function

q = ~q(�) = ~q(ep�1(p)) = q(p). Since the matching function has constant return to scale, we

can write q = q(p), with q0(p) < 0.

Our equilibrium concept is the competitive search equilibrium (Moen 1997), which com-

bines competitive price determination and search frictions. One of its core element is the

unique relationship between the attractiveness of the o¤ered wage contract and the expected

rate at which the vacancy is �lled. This relationship can be derived in several alterna-

tive settings.1 In the present paper, we choose the interpretation that �rms advertise wage

contracts.

As mentioned, we study a segment of the labor market where workers are ex ante identi-

cal.2 Compared with the simplest bench-mark search model, we bring in two new elements,

both of which are common in labor economics. First we assume that the output of a match

depends on worker e¤ort, e. Second, we include stochastic job matching. As in Jovanovic

1Moen (1997) assumes that a market maker creates submarkets and shows that the same equilibrium
can be obtained if �rms advertise wages. This interpretation is further developed in Mortensen and Wright
(2002). Mortensen and Pissarides (1999, section 4.1) interpret the market maker as a �middle man� (like
a job center) that sets the wage. In Acemoglu and Shimer (1999a and 1999b), the labor market is divided
into regional or industrial submarkets o¤ering potentially di¤erent wages.

2Workers with di¤erent observable (and contractible) characteristics would be o¤ered di¤erent wage
contracts. Furthermore, in competitive search equilibrium, they search in separated search markets and
hence do not create search externalities towards each other.
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(1979) and many subsequent papers (see Pissarides 2000, ch. 6 for an overview), we allow the

productivity of a given worker-�rm pair to be match-speci�c. The output y of a worker-�rm

pair is given by

y("; e) = y + "+ e; (1)

where y is a constant, " the match-speci�c term (or stochastic matching term) and e is

worker e¤ort.

Output y is observable and contractible. However, as in most models of optimal wage

contracts, we assume that the worker (the agent) has an information advantage over the

�rm (the principal) �we assume that only the worker can decompose output y into e¤ort

e and the stochastic matching term ". As a �rm cannot tell whether a high output level

y is due to high e¤ort or a high match-speci�c term, this will give rise to a moral hazard

problem between workers and �rms. Note that the information problem facing �rms is one-

dimensional as �rms observe the sum of the two unobserved variables " and e. If the �rm

could observe say e, it would be able to back out ". Thus, with observable output, we need

both components to be private information for the worker in order to get an interesting

agency problem.

In equation (1) the parameter  is a measure of the relative importance of worker e¤ort.

As is common in the stochastic matching literature, we assume that " is i.i.d across all

worker-�rm matches. In footnote 5, we argue that our results also hold when allowing for

some correlation of the stochastic match component. For any given match, " is constant

over time and continuously distributed on an interval ["; "] with the cumulative distribution

function H and density function h. We assume that H has an increasing hazard rate.

The wage contracts advertised by �rms can be described as direct revelation mechanisms

designed so that workers truthfully reveal their match-speci�c term, ". When a worker and

a �rm meet, the worker learns " and reports it to the �rm. If the contract prescribes that

a match should not be formed for the reported ", workers and �rms continue to search.

Formally, a contract is given by a triple � = (w("); e("); "c), where "c � " denote the

threshold value of " below which a match is not formed. We do not consider tenure-dependent

contracts. This is without loss of generality, as we show later that the optimal contract is
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tenure-independent.

Before we continue, we would like to make two comments regarding the set-up, both

related to the match-speci�c term ". The �rst comment regards the exact timing of when

a worker learns the match-speci�c productivity term ". We assume that a worker learns "

before the contract is signed. This sequence rules out up-front payments from the worker to

the �rm before the worker learns ".3

The second comment regards our assumption that the match-speci�c productivity term

is unobservable to the �rm. An alternative interpretation is that, although able to observe

", �rms are unwilling or unable to di¤erentiate output-contingent wage contracts between

workers with the same observable characteristics but di¤erent stochastic matching terms.

Di¤erent wage contracts would here mean o¤ering less attractive contracts to workers with a

high stochastic match term. Evidence of workers with di¤erent productivities working under

the same bonus scheme is given in e.g., Lazear (2000).

Asset value equations

The asset value equations de�ne the parties�payo¤s for a given contract, � = (w("); e("); "c).

Let U denote the expected discounted utility of an unemployed worker and fW (") the ex-
pected discounted utility of an employed worker with a match-speci�c productivity term ",

hereafter somewhat imprecisely referred to as her type. Then, fW (") is de�ned as

(r + s)fW (") = w(")�  (e("))

� !("); (2)

where w denotes the wage,  (e) the cost of e¤ort and !(") the wage net of e¤ort costs.

The function  (e) is increasing and its derivative  0(e) is increasing and convex in e: The

expected discounted value of a worker being matched is

W =

Z "

"c

fW (")dH +H("c)U:

3If up-front payments are not admitted, it is su¢ cient that the worker learns " after exerting e¤ort and
observing y.

7



The expected discounted utility of an unemployed worker is given by

(r + s)U = z + p(W � U),

where z is the utility �ow when unemployed.

Let V denote the expected discounted value of a �rm with a vacancy and eJ(") the
expected discounted value of a �lled job with a worker of type ", where eJ(") is de�ned as

(r + s) eJ(") = y(e("); ")� w("):

The expected value of a �rm being matched is

J =

Z "

"c

eJ(")dH +H("c)V

=

Z "

"c

y(e("); ")� w(")

r + s
dH +H("c)V: (3)

The value of a vacancy can be written as

rV = �c+ q(J � V ):

For our subsequent analysis, it is convenient to use the concept of worker rents associated with

a match. The rents from a match re�ect the workers�expected "capital gain", or expected

income (net of e¤ort costs) in excess of U , of being matched to a vacancy. Note that the

expected rent associated with a match may be lower than the expected rent associated with

employment, because not all matches need to end up in employment. The expected worker

rents of a match can be expressed as

R � W � U

=

Z "

"c

[
!(")

r + s
� U ]dH: (4)

Using the de�nition of worker rents, the expected utility of an unemployed worker takes a

particularly simple form

(r + s)U = z + pR: (5)
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That is, the �ow value of an unemployed worker is equal to the utility �ow when unemployed

plus the expected gain from search, which is equal to the matching rate times the expected

rent associated with a match. The total expected surplus of a match is S � J � V + R, or

(using equations (3) and (4))

(r + s)S =

Z "

"c

[y(e("); ")�  (e("))� (r + s)U � (r + s)V ]dH: (6)

Finally, the unemployment rate is given by

u =
s

s+ p(1�H("c))
: (7)

3 Equilibrium with full information

In this section, we characterize the equilibrium outcome in the special case where " and e

are observable and contractible. This will serve as a benchmark for later analysis. When

de�ning the equilibrium, we do not require the participation constraint to be satis�ed for

hired workers. However, as we will see, the workers�participation constraint can be satis�ed

in equilibrium without a¤ecting the equilibrium allocation.

Key for characterizing the competitive search equilibrium is the relationship between

the wages a �rm o¤ers and the speed at which the vacancy is �lled. Let U� denote the

equilibrium utility of a searching worker. Then, for any expected rent R a �rm o¤ers, the

queue length of workers adjusts so that the applicants get the equilibrium expected utility

equal to U�. That is,

z + pR = (r + s)U�; (8)

which de�nes p as a decreasing function of R, p = p(R) (the dependence of U� is suppressed).

In equilibrium, �rms choose wage contracts so as to maximize pro�ts. In addition, free

entry of �rms implies that the value V of a vacancy is zero.

De�nition 1 The competitive search equilibrium under full information is a contract �F =

(wF ("); eF ("); "Fc ); a vector of asset values (S
F ; RF ; UF ), and a job �nding rate pF such that

the following holds:
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1. Pro�t maximization. The equilibrium solves the program P1 given by

rV max(U) = max
w(");e(");"c;S;R;p

�c+ q(p)(S �R)

s.t.

(r + s)U = z + pR (C1)

(r + s)R =

Z "

"c

[w(")�  (e("))� (r + s)U ]dH(") (C2)

(r + s)S =

Z "

"c

[y(e("); ")�  (e("))� (r + s)U � (r + s)V ]dH("): (C3)

2. Free entry:

V max(UF ) = 0: (9)

We solve the pro�t maximization program P1 in two steps.

1. For a given U , �nd Smax(U) such that

(r + s)Smax(U) = max
e(");"c

Z "

"c

[y(e("); ")�  (e("))� (r + s)U � (r + s)V ]dH("): (10)

2. For a given U and Smax(U), �nd V max(U) such that

rV max(U) = max
R
�c+ q(p(R))[Smax(U)�R]; (11)

where p(R) is de�ned by (8).

The �rst-order condition for the optimal e¤ort levels reads:

 0(e(")) =  for all ": (12)

The optimal cut-o¤ level is given by either "c = " or (with V = 0)

y + "c + e("c)�  (e("c)) = (r + s)U: (13)
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The equation de�nes the e¢ cient cut-o¤ level, which equalizes the worker�s net productivity

with the outside options. Note that the solution is independent of R.

Then, we turn to the second step. In Appendix 1, we show that the solution to (11)

satis�es the Hosios condition (Hosios, 1990):

RF

SF �RF
=

�

1� �
; (14)

where � denotes the absolute value of the elasticity of q with respect to � = v=u. Finally,

the free-entry condition (9) pins down UF .

Given UF , equations (12) and (13) de�ne eF (which is independent of both " and U)

and "Fc , while equation (14) determines R
F and indirectly pF . (We assume the matching

function to be well behaved so that equation (14), for a given SF , uniquely determines RF ).

The equilibrium does not pin down a unique wage schedule, wF ("). The equilibrium wage

schedule may, for instance, be an appropriately chosen constant wage, independent of " for

all " � "c. The workers�participation constraint is then satis�ed for all types.

4 Generalized competitive search equilibrium

When e and " are private information, the contracts must satisfy the workers� incentive

compatibility and participation constraints, which read

w(")�  (e(")) � w(e")�  (e(e")� "� e"

) for all ";e" (C4)

w(")�  (e(")) � (r + s)U for all " � "c: (C5)

The left-hand side of constraint (C4) shows the utility �ow of a worker of type " who reports

her type truthfully, while the right-hand side shows the utility �ow if she instead reports e".
The last equation ensures that all workers at or above the cut-o¤ level "c accept the contract.

De�nition 2 The generalized competitive search equilibrium (GCS-equilibrium) is a contract

�� = (w�("); e�("); "�c); a vector of asset values (S
�; R�; U�), and a job �nding rate p� such

that the following holds:
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1. The equilibrium solves program P1 with (C4) and (C5) as additional constraints. We

refer to this as program P2.

2. Free entry:

V max(U�) = 0: (15)

Let e!(";e") denote the utility �ow of a worker of type " who reports type e" (the right-hand
side of constraint (C4)). The utility �ow of a worker of type " is !(") � argmaxe" e!(";e").
From the envelope theorem, it follows that

!0(") =
@e!(";e")
@"

:

Truth-telling requires that e" = " and hence, that

!0(") =  0(e("))=: (16)

Note that with truth-telling, !(") = w(")� (e(")) denotes the utility �ow of a worker of

type ". If a worker�s type increases by one unit, she can reduce her e¤ort by 1= units and

still obtain the same output, thereby increasing her utility by  0(e("))= units. Incentive

compatibility requires that the worker obtains the same gain by reporting her type truthfully.

Using equation (16), the utility �ow to a worker of type " � "c can be written as

!(") = !("c) +

Z "

"c

 0(e(x))


dx: (17)

Note that contracts that prescribe more e¤ort from low-type workers must give larger rents

to high-types to keep the incentive compatibility constraint satis�ed.

A �rst question that arises is whether the full information equilibrium (SF ; RF ; UF ; pF ; �F )

is still feasible. The next lemma addresses that question.

Lemma 1 a) For "Fc > ", the GCS-equilibrium with full information is not feasible when "

and e are private information to the worker.

b) For "Fc = ", the GCS-equilibrium with full information is feasible with private infor-

mation if and only if RF > R, where
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R =

Z "

"

"� "

r + s
dH("): (18)

Proof. a) Suppose the full information equilibrium is feasible. Denote the full information

output level by yF ("). The participation constraint (C5) then binds, and together with

equation (13), it follows that w("c) = yF ("c). Recall that w(") � !(") +  (eF ): Inserting

(12) into (17) thus gives

w(") = yF ("c) + "� "c

= yF ("):

Hence, the pro�t is zero for all worker types and no �rm enters the market. This is incon-

sistent with the equilibrium.

b) For "c = " we may have that (r+ s)U < yF (") and hence !("c) < yF ("c)� (eF ). Set

!("c) at its lowest possible value that satis�es the participation constraint, !("c) = (r+s)U .

Inserting  0(e(")) =  into (17) then gives !(") = (r+ s)U + "� ". The lowest possible rent

R that implements the full information allocation is thus given by (18).

If RF > R, the full information equilibrium can be implemented by setting fW (") =
U + RF � R. In the following, we consider the case where RF < R. To solve the �rms�

maximization program P2, we use the standard method of integrating up the incentive

compatibility constraint using integration by parts. As rent is valuable, �rms do no not

leave rents to the marginal worker, !("c) = (r + s)U . From equation (17), we then get

Z "

"

!(")dH(") = (r + s)U +

Z "

"c

Z "

"c

 0(e(x))


dxdH(")

= (r + s)U +

Z "

"c

 0(e("))



1�H(")

h(")
dH("):

Using (4) thus gives

(r + s)R =

Z "

"c

 0(e("))



1�H(")

h(")
dH("): (C6)

As for the full-information equilibrium, program P2 is solved in two steps:
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1. (Optimal contracts) For a given U and R, �nd Smax(U;R) de�ned as

(r + s)Smax(R;U) = max
e(");"c

Z "

"c

[y(e("); ")�  (e("))� (r + s)U � (r + s)V ]dH(")

s.t.

(r + s)R =

Z "

"c

 0(e("))



1�H(")

h(")
dH("):

Denote the associated contract by �max(R;U).

2. (Optimal sharing rule) For a given U and Smax(R;U), �nd V max(U) such that

rV max(U) = max
R
�c+ q(p(R))[Smax(R;U)�R]; (19)

where p(R) is de�ned by (8).

Finally S� = Smax(R�; U�) and �� = �max(R�; U�).

Step 1: Optimal contracts Denote the Lagrangian parameter associated with the rent

constraint (C6) by �. The Lagrangian is given by

L =

Z "

"c

[y + "+ e(")�  (e("))� (r + s)U � (r + s)V ]dH(")

��[
Z "

"c

 0(e("))



1�H(")

h(")
dH(")� (r + s)R]:

The �rst-order conditions for maximum are now immediate:

Proposition 1 (Solution to the �rst step). For given R and U , the optimal contract satis�es

the following conditions

a) The �rst-order condition for the e¤ort level:

 �  0(e(")) = �
1�H(")

h(")
 00(e("))=: (20)

b) The �rst-order condition for the optimal cut-o¤ level, given by either "c = " or (with

V = 0)

[y + "c + e("c)�  (e("c))� (r + s)U ]h("c) = �(1�H("c))
 0(e("c))


: (21)

c) The rent-constraint de�ned by equation (C6).
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Before we explain the �rst-order conditions in some detail, note that � is the shadow

�ow value of worker rents for the match surplus Smax(R;U). More precisely,

(r + s)SmaxR = �, (22)

where subscript R denotes the derivative with respect to R.

Equation (22) captures a fundamental role of private information. In the full-information

equilibrium derived in the previous section, the match surplus Smax was independent of R,

the division of surplus between the worker and the �rm did not in�uence the match surplus

(i.e., output). In contrast, with private information, the amount of surplus and the division

of the surplus are interrelated (as long as RF � R). The higher is the share of the surplus

that is allocated to the worker, the higher is the match surplus.

The two �rst-order conditions generalize optimal contracts with private information (as

in e.g. La¤ont and Tirole, 1993) to a setting with search frictions. Without frictions, the

shadow value of rents � would be equal to 1. For � = 0, the �rst-order conditions coincide

with those of the full-information case. As shown above, this is only feasible when RF � R.

Consider the optimal e¤ort equation (20) and suppose that the e¤ort level of a type "̂

worker increases by one unit. The left-hand side of equation (20) captures the resulting

e¢ ciency gain  �  0(e("̂)). The right-hand side captures the costs associated with an

increase in e¤ort. A one unit increase in e¤ort of a type "̂ worker increases the rents of all

workers above "̂ by  00(e("̂))= units (from equation 17) and the shadow value of this rent

is �. The likelihood of obtaining a worker of type "̂ is re�ected in h("̂), while the measure

of workers with higher match-speci�c productivity is 1 � H("̂). This explains the factor

(1 � H("̂))=h("̂). Note that e�(") = eF (no distortion at the top). Since h has increasing

hazard rate and  000(e) � 0, e(") is increasing in " (hence, the second-order condition is

satis�ed).

The left-hand side of the cut-o¤equation (21) shows the net productivity loss of increasing

"c. The right-hand side represents the gain in terms of reduced rents, which have a shadow

�ow value �. In Appendix 2, we show that the cut-o¤ level is unique for a given �.

Let (a; b) denote a linear contract of the form w = a + by. It is well known that the
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optimal non-linear contract can be represented by a menu (a("); b(")) of linear contracts.4

For any b, the worker chooses the e¤ort level such that  0(e) = b. Inserting this condition

into equation (20), we obtain

b(") = 1� �
1�H(")

h(")

 00(e)

2
: (23)

We refer to b(") as the incentive power of the optimal contract. The value of a(") is set so

that (C6) is satis�ed. For later reference, we also express the expected rent in terms of b(").

Inserting  0(e) = b into equation (C6) gives

(r + s)R =

Z "

"c

b(")
1�H(")

h(")
dH("): (24)

Proposition 2 The optimal contract �max(R;U) and match surplus Smax(R;U) have the

following properties:

a) The e¤ort level e(") is strictly increasing in R for all " < " and the cut-o¤ level "c is

decreasing in R.

b)The match surplus Smax(R;U) is strictly increasing and concave in R.

c)If all types are hired ("c = "), then

i) a shift in U shifts a(") but leaves b(") unchanged for all ".

ii) a shift in U does not in�uence the marginal value of rents, i.e., SmaxRU = 0.

Proof. See Appendix 3.

First consider result a). When the principal has more rents to dole out, she can a¤ord

to give stronger incentives to all workers. Furthermore, as the expected rent is decreasing

in the cut-o¤ level, a higher R also implies that the principal can a¤ord to hire workers of a

lower type, by reducing "c. The proposition states that the principal does both.

The �rst part of b), that the match surplus, Smax, increases in R, directly follows from

the fact that the rent constraint is binding. The second part of b), that Smax is concave in

R, follows from the convexity of the maximization problem, i.e. that the marginal return

from higher e¤ort or a lower cut-o¤ level is decreasing.

4See, e.g., La¤ont and Tirole, 1993.
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Result c) states that if all workers are hired, the workers� outside option U neither

in�uences the incentive power of the contract nor the shadow value of rents. Intuitively, for

a given cut-o¤, a change in U (for a given R) only implies that more income is transferred to

the worker and the e¤ort level remains constant for all types. This property of the optimal

contract will be extensively used below.5

Above, we have derived the optimal static (tenure independent) contract.

Lemma 2 The optimal dynamic contract repeats the static contract, provided that the �rm

can commit not to renegotiate the contract.

Proof. See Appendix 4.

Providing incentives is costly for �rms, as it yields information rents to the inframarginal

workers. Deferred compensation or other time dependent wage contracts do not reduce this

information rent, as they do not reduce the rent high types can obtain by pretending to be low

types. Furthermore, deferred compensation does not in�uence the participation constraint

at the hiring stage. It may loosen the participation constraint for tenured workers, but this

has no value to the �rm as the worker�s outside option is time independent.

Step 2: Optimal sharing rules In Appendix 5, we derive the �rst-order condition for

the maximization problem (19). With the equilibrium value of U� inserted, the �rst-order

condition reads

[1� SmaxR (R�; U�)]
R�

S� �R�
=

�

1� �
; (25)

where, as before, � denotes the absolute value of the elasticity of q with respect to � = v=u.

We refer to this equation as the modi�ed Hosios condition. The modi�ed Hosios condition

states that the workers�share of the match surplus, R�=(S��R�); increases with the marginal
5 If the match productivities " were correlated between �rms, a worker�s outside option would increase

with ". However, U 0(") < 1=(r+s) would still hold and U 0(") would be smaller when the correlation is weaker.
The incentive compatibility constraint would be unaltered. Furthermore, the participation constraint would
still only bind for the lowest type, provided that the correlation is not too high. Hence, our main argument
would still hold. However, the rents associated with a given contract and thus also R would be lower.
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value of worker rents, SmaxR . Thus, a smaller fraction of the match surplus is allocated

to job creation. When SmaxR = 0, equation (25) is identical to the Hosios condition with

full information given by equation (14). With full information, a wage increase is purely

redistributional. It reduces the value of a match for the �rm by exactly the same amount

as it increases its value for the worker. With private information, this no longer holds. A

one-unit increase in R increases the match surplus Smax by SmaxR units, thereby reducing the

�rm�s pro�t J by 1� SmaxR units.

Proposition 3 Suppose z < y+eF+". Then the generalized competitive search equilibrium

exists. If � = �q0(�)�=q(�) is non-decreasing in �, the equilibrium is unique.

Proof. By de�nition, the value function V max(U) is unique, and it is trivial to show that

it is continuous and strictly decreasing in U . If U ! z+, it follows from equation (8)

that p(R) converges to zero and thus, that q(p(R)) converges to 1. Hence, R = 0 and

(r + s)V = y + eF + " � U > 0. Similarly it follows that limU!y+eF+" V (U) < 0. Thus,

there exists a unique U� 2 (z; y + eF + ") such that V max(U�) = 0.

Then we turn to uniqueness. The left-hand side in equation (25) increases in R on the

relevant intervals of R. An increase in R for a given U implies a fall in �. Given that

�0(�) � 0, it thus follows that the right-hand side of equation (25) is decreasing in R and

this ensures uniqueness.

With the Cobb-Doulgas matching function x(u; v) = Au�v1��, it follows that � = �. The

modi�ed Hosios condition then reads

[1� SR(R
�; U�)]

R�

S� �R�
=

�

1� �
: (26)

The competitive search equilibrium with full information maximizes the asset value of

unemployed workers, given that �rms break even (Acemoglu and Shimer, 1999b). This

property also holds for the GCS-equilibrium:

Lemma 3 The generalized competitive search equilibrium maximizes U given the free entry

constraint V = 0 and the relevant information constraints.
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Proof. Suppose the contrary, i:e. that there exists a wage contract ~� such that U(~�) =

~U > U� and V = 0. By de�nition, a �rm o¤ering ~� breaks even at U = ~U . Thus, the

�rm makes a strictly positive pro�t if it advertises this contract when U = U� < ~U (recall

that V only depends on U). But then �� cannot be a pro�t-maximizing contract, which is

a contradiction.

5 Applications

In this section, we address the e¤ects of aggregate shocks on sharing rules (wages), incentives

and unemployment. Ideally, this should be done by specifying a stochastic process for the

variable in question (for instance y), and then solving the model assuming that the agents

have rational expectations. We have chosen a simpler alternative and instead do comparative

statics analysis. Note, however, that all equilibrium variables but the unemployment rate

are jump variables, and the unemployment rate converges much more quickly to its steady

steady state level than the average duration of the cycle. Hence, the transition path towards

steady expectations about future changes in macroeconomic conditions may not be very

important. Furthermore, both Shimer (2005) and Mortensen and Nagypal (2006) argue

that the analysis of productivity shocks can be carried out without explicitly modeling the

dynamics. An adequate approximation is to do comparative statics with respect to the

productivity variable.6 To obtain simple expressions, we assume that the matching function

is Cobb-Douglas, x(u; v) = Au�v1��, so that the modi�ed Hosios condition is given by (26).

Some shifts in parameter values change the optimal contracting problem (stage 1). We

refer to such shifts as information-changing shifts. However, when "c = ", some shifts do not

a¤ect the stage-one maximization problem. We refer to such shifts as information-neutral

shifts. They are changes in general productivity y, unemployment bene�t / value of leisure

z, vacancy cost c and matching e¢ ciency, A:

As we will see, information-neutral shifts in productivity y with an exogenous cut-o¤ at

most lead to rent rigidity. As shown in Brugemann and Moscarini (2007), this is not su¢ cient

6The cut-o¤ level "c may increase after a negative shock. Thus, a measureof workers employed initially
will leave their jobs immediately after a negative shock. This e¤ect is not captured in our comparative statics
analysis.
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to fully explain the Shimer puzzle discussed in the introduction. However, information

changing shifts may cause output and worker rents to move in di¤erent directions, thereby

violating assumption 1a) in Brugemann and Moscarini. We show that in this case, there are

no bounds on how large the e¤ects may be. In addition, e¤ects through endogenous cut-o¤

levels may also increase the responsiveness to unemployment after aggregate shocks.

5.1 Information-neutral shifts

We �rst assume all worker types to be hired, i.e. "c = ". Later on, we analyze the case with

an interior cut-o¤ level.7

The e¤ect of information-neutral shifts depends on their e¤ect on the match surplus, and

the core equation for evaluating the e¤ects of the shifts is equation (26). Since SRU = 0, the

equation is independent of U�. Di¤erentiating (26) gives

dS� =
1� �

�
[�SRR(R�)R� + (1� SR(R

�)) +
�

1� �
]dR� (27)

= �dR�:

Since SR(R�) < 1 and SRR(R�) < 0 (from Proposition 2b), it follows that � > 0. Slightly

rewriting (26) gives
R�

S� �R�
=

1

1� SR(R�)

�

1� �
: (28)

The workers�share of the surplus thus increases if and only if R� decreases. Furthermore,

since � = SR(R
�), it follows from equation (20) that an increase in R� increases the incentive

power of the wage contracts and hence, also the e¤ort level for all ".

From (27) and (28), it follows that if an information-neutral shift increases S�, it also

increases R�, reduces the workers�share of the surplus and increases the incentive power of

the wage contracts.

Shifts in y: A shift in y has two e¤ects on S�. On the one hand, it increases S� for a

given U�. On the other hand, it also increases U�, which tends to reduce S�. However, since

7In Appendix 6, we show that "c = " and simultaneously, RF < R is indeed possible.
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there is a time delay before an unemployed worker �nds a job, the former e¤ect dominates

and S� increases (See Appendix 7 for a formal proof).

Thus, from equations (27) and (28) and the following discussion, a drop in y increases

the worker�s share of the surplus. This is an interesting observation and it is relevant for the

discussion about rigid wages following the �ndings in Shimer (2005). As discussed in the

introduction, Shimer documents empirical regularities of the business cycle that the standard

matching model of the labor market can hardly account for. With private information, the

workers�share of the surplus is counter-cyclical. After a negative shock to y, there is a fall

in the match surplus. Hence, for a given sharing rule, the shadow value of worker rents

increases. As a result, �rms �nd it optimal to increase the worker�s share of the surplus.

Thus, wages are more rigid and the unemployment rate is more volatile than in the standard

model without private information.

Note in particular that our result relates to the discussion in Hall (2005a). Hall argues

that due to social norms, the worker�s share of the match surplus is counter-cyclical.8 Our

model generates a counter-cyclical sharing rule as an optimal response to changes in aggregate

variables in the presence of private information.

As y reduces SR, it follows from the discussion below (28) that the incentive power of the

equilibrium wage contracts measured by b(") falls for all ". Loosely interpreted, the model

thus predicts that pay should be less variable when aggregate productivity is low than when

it is high.

Shifts in unemployment bene�ts. An increase in z, unemployment bene�ts or value

of leisure shifts U� upwards and S� downwards (see Appendix 7). Higher unemployment

bene�ts increase the workers�outside options and reduce the available match surplus. As a

result, there is an increase in the workers�share of the surplus.

An increase in unemployment bene�ts thus both has a direct and an indirect e¤ect on

the unemployment rate. The direct or standard e¤ect is that it reduces the match surplus,

leading to less entry for a given sharing rule. Our new, indirect e¤ect is that the share of the

8Hall (2005b) also shows that wage rigidity may be the result of alternative speci�cations of the bargaining
procedure or self-selection among workers.
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match surplus allocated to the worker increases, which further increases the unemployment

rate.

Note that there is a link between unemployment bene�ts and the optimal wage contract.

As z increases and S� falls, there are less rents to the workers and the incentive power of

the wage contract falls. Thus, our model predicts that higher unemployment bene�ts are

associated with less incentive pay and lower e¤ort provision.

Shifts in the search cost c and the matching technology parameter A. An

increase in search cost c reduces the equilibrium value U� and increases S� (see Appendix

7). As a result, the worker�s share of the match surplus decreases. Once more, the change

has a direct and an indirect e¤ect on the unemployment rate, but they now go in opposite

directions. The direct (standard) e¤ect of an increase in c is higher unemployment. For a

given sharing rule, fewer �rms enter the market and the unemployment rate increases. The

indirect, countervailing e¤ect is that the workers� share of the surplus falls. As a result,

private information tends to dampen the e¤ects of higher search costs on the unemployment

rate.

Since there is an increase in the rents that are allocated to worker�s in equilibrium, a

higher value of c implies that the wage contracts become more incentive-powered. If the

search costs are su¢ ciently large, it follows that RF > R, and all workers are given �rst-best

incentives.

A decrease in A has the same e¤ect as an increase in c. As the match surplus increases,

the worker�s share of the surplus decreases and the incentive power of the contract increases

for all ".

When search frictions are high, it is more important for �rms to speed up the hiring

process by o¤ering workers more rents. Thus, the cost of providing incentives in terms of

higher worker rents falls, and �rms increase the incentive power of the contract.

We summarize our �ndings in a proposition:

Proposition 4 For a given cut-o¤ "c = ", the following is true

a) A positive shift in y decreases the workers�share of the surplus and shifts b(") upwards.
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b) An increase in the unemployment bene�t z increases the workers�share of the surplus

and shifts b(") downwards.

c) An increase in search frictions (an increase in c or a reduction in A) decreases the

workers�share of the match surplus and shifts b(") upwards.

5.1.1 Interior cut-o¤ level

We now turn to the case with an interior cut-o¤. To facilitate the reading, we repeat the

�rst-order condition for the optimal cut-o¤ level, "c.

y + "c + e("c)�  (e("c))� (r + s)U = �
(1�H("c))

h("c)
b("c) (29)

(where we have used that  0(e("c)) = b("c)). The left-hand side is the match surplus

associated with the marginal worker. It re�ects the cost of increasing "c and thereby not

realizing matches with a positive match surplus. The right-hand side re�ects the gain of

increasing "c in terms of lower rents for higher types that are hired.

Proposition 5 The cut-o¤ level "c decreases in y and c and increases in z and A.

Proof. See Appendix 8.

A fall in y implies that the left-hand side of equation (29) falls (since y falls more than

(r+s)U), which tends to increase the cut-o¤ level "c. Furthermore, we know that an increase

in � also increases "c (Appendix 3). A similar argument holds for shifts in z, A and c.

Thus, in all cases, the e¤ects through the cut-o¤ level seem to exacerbate our previous

�ndings regarding the responsiveness of the unemployment rate to shocks. In particular, a

negative shift in y increases the cut-o¤ level, thereby leading to a further increase in the

unemployment rate. However, there is a caveat here: As "c shifts upwards after a fall in y,

this tends to dampen the increase in �, which may even fall. However, this typically happens

when the increase in "c (and thus, its adverse e¤ect on the unemployment rate) is large.

Moreover, also with endogenous cut-o¤ levels, a fall in y leads to a fall in R�; hence, we do

not go beyond rent rigidity as de�ned in Brugemann and Moscarini (2007) and Brugemann

(2008). Thus, the e¤ects on the unemployment rate through labor market tightness are still
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insu¢ cient for explaining the Shimer puzzle. However, the e¤ects through the cut-o¤ level

come in addition and are not limited by the Brugemann-Moscarini bound.

5.2 Information-changing shifts

In this subsection, we analyze the e¤ects of shifts that have a direct in�uence on the marginal

value of rents SmaxR (R;U). Once more, we �rst assume that all worker types are hired, i.e.

"c = ", and return to the case with an interior cut-o¤ level below.

Consider �rst a shift in the distribution of ". To this end, write the match-speci�c

productivity term as " = k�, where � is symmetrically distributed on [�1; 1] and k is a

scalar. Let eH(�) denote the cumulative distribution function of �. Let k denote the value
of k such that R� = R (k is thus the highest possible k for which the full-information

equilibrium is feasible). We study the e¤ects of an increase in k for k � k. On the one

hand, an increase in k increases the amount of private information workers possess. For a

given R, the incentive power of the wage contract thus decreases, which tends to increase

the marginal value of e¤ort and thus, SmaxR . On the other hand, an increase in k implies that

more rents are needed to increase workers� incentives, which tends to reduce the value of

SmaxR . It turns out that if the private information problems are moderate (k relatively close

to k), the �rst e¤ect dominates, and an increase in k increases SmaxR . De�ne the "average"

incentive power as9

b =

Z "

"

b(")

"� "
d":

In Appendix 9, we show that a su¢ cient condition ensuring that an increase in k increases

SmaxR is that b � 1=2. Note that if R is close to R, then b is close to 1 for all " and this

condition is certainly satis�ed

As long as "c = ", an increase in k reduces the expected output: for a given R, an increase

in k implies that the optimal contract cuts back on worker e¤ort, and output falls. The �rm

may compensate by increasing R, but this only has a second-order e¤ect on U� due to the

9Note that b is generally not equal to the expected value of b, unless " is uniformly distributed.
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envelope theorem. Hence, an increase in k decreases U� and can thus be considered as a

recession.

We want to illustrate with an example that the e¤ects of changes in the information

structure may lead to large changes in the unemployment rate, relative to the change in

output per worker (net of e¤ort costs). To this end, suppose that initially k = k, such

that the full information outcome is achievable but with no slack. Let ey(k) denote expected
output net of e¤ort cost and let u(k) denote the equilibrium unemployment rate given by

equation (7) and p� as a function of k.

Proposition 6 Consider an increase in k and suppose that initially, k = k. Then,

lim
k!k

+

du(k)

dey(k) =1:

Proof. See Appendix 10.

An increase in k from k only has a second-order e¤ect on the match surplus. However, it

has a �rst-order e¤ect on �, the shadow value of rents and thus, also on R�. Furthermore, an

increase in R� implies that �rms o¤er fewer vacancies and hence, that p falls and u increases

(from 7). Thus, although the change has negligible e¤ects on net output, it may have a

substantial e¤ect on the sharing rule and thus also on the unemployment rate.

Let us next consider the e¤ects of shifts in the importance of unobservable e¤ort, .

An increase in  implies that e¤ort is more more productive. Consider equation (23). For

any given b("), an increase in  increases the e¤ort level (recall that  0(e(")) = b(")).

Furthermore, the rent-constraint (24) is una¤ected. Therefore, the issue is how an increase

in  in�uences the marginal gain from increasing the incentives b(") and thereby the marginal

value of rents. The next lemma shows that under reasonable assumptions on  (e), an increase

in  increases the marginal value of worker rents:

Lemma 4 Given that "c = "; SmaxR (R;U) is increasing in  provided that  00=( 0)2 is non-

increasing in e.10

10This restriction is rather mild and is satis�ed for most convex functions. For instance, any polynomial
of the form  (e) = en (n > 1) satis�es this condition, as well as the exponential function exp e.
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Proof. See Appendix 11.

Thus, for given values of R and U , an increase in  increases the workers�share of the

surplus. An increase in  tends to increase output and is in that sense a positive shock.

However, a shock may in�uence both y and . For instance, if a fall in y is caused by

an increase in input prices (e.g. energy prices) and e¤ort and other inputs are substitutes,

a fall in y goes hand in hand with an increase in . Furthermore, the elasticity of the

unemployment rate to average productivity may be arbitrarily high if the fall in y and the

increase in  imply that average productivity barely falls while the change in  is substantial.

More generally, if correlated with the business cycle, information-changing shifts may

increase the volatility of the unemployment rate. If workers have more private information

during a downturn, or if unobservable e¤ort is more important during a downturn, this will

further increase the negative e¤ect on the unemployment rate.

Note also that for information-changing shifts, the conditions in Brugemann andMoscarini

(2007) are not satis�ed. For instance, the e¤ect of an increase in k; for k close to k; is a

decrease in average productivity together with an increase in the expected rent. Hence, their

assumption 1a is violated and their volatility bound does not apply. The same may be true

if a reduction in y goes hand in hand with an increase in .

5.2.1 Interior cut-o¤ level

We now turn to the case with an interior cut-o¤ level.

Lemma 5 a) Suppose that b("c) � 1=2 and "c < 0. Then an increase in k increases "c:

b) Suppose  00=( 0)2 is non-increasing in e. Consider an increase in  combined with a

reduction in y such that U� is unchanged. Then "c increases.

Proof. See Appendix 12.

Thus, the e¤ects through "c tend to exacerbate our previous �ndings, although the caveat

regarding � pointed out in section 5.1.1 still applies. Note that when k is close to k, the

quali�ers under a) are certainly satis�ed; hence the e¤ects through the cut-o¤ level will

increase the responsiveness of the unemployment rate to shocks to k. The quali�er that U�
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is unchanged in b) is needed because, in addition to changing the information structure, an

increase in  also increases average productivity, and the latter e¤ect tends to reduce "c.

6 Final comments

In this paper, we de�ne and characterize what we refer to as the generalized competitive

search equilibrium, in which workers have private information regarding their e¤ort and

"type". In our model, the �rms face a trade-o¤ between extracting rents from workers

and providing incentives to exert e¤ort. Search frictions with competitive wage setting

imply that the cost of leaving rents to the worker are lower than in the standard frictionless

model, as worker rents save on search costs for the �rms. We show that the resulting

equilibrium satis�es what we refer to as the modi�ed Hosios condition. We also analyze

the equilibrium e¤ects of changes in macroeconomic variables. Private information may

increase the responsiveness of the unemployment rate to productivity changes. Furthermore,

the incentive power of the wage contracts is positively related to high productivity, low

unemployment bene�ts and high search frictions.

We want to point out that our de�nition of the generalized competitive search equilibrium

is �exible and can easily accommodate other forms of incentive problems. In a working paper

version of this paper (Moen and Rosén 2006b), we both analyze a model with shirking as

in Shapiro and Stiglitz (1984) and a model with non-pecuniary aspects of employment. For

instance, in the shirking model, workers are identical, but both worker e¤ort and output are

private information to the worker. E¤ort is either 0 or 1 and the e¤ort cost is  . Let g

denote the probability rate of a shirking worker being detected, in which case she is �red.

The non-shirking condition is then given by

 � gR:

If we are in a region where the non-shirking constraint binds, the equilibrium rent is de-

termined by R� =  =g. A fall in y then has no impact on R� and we get complete rent

rigidity.

It is our belief that developing search models with a richer structure than the standard
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Diamond-Mortensen-Pissarides model may add new insights, both within macroeconomics

and di¤erent sub�elds of labor economics. In previous studies, the inclusion of human

capital in search models has improved our understanding of human capital formation. The

present paper addresses questions that are relevant for both macroeconomic �uctuations and

personnel economics within a search framework. Adding more structure to search models

may therefore be a fruitful avenue for future research.

Appendix

Appendix 1: Equation (14)

Taking the derivative of equation (11) with respect to R and utilizing that V max 0(R�) = 0

gives the �rst-order condition

q0(p)p0(R)(SF �R)� q = 0 (30)

or, by simple manipulation,

elpq(p)elRp(R) =
R

SF (R)�R
: (31)

From equation (8) it follows that elRp(R) = �1. We want to show that elpq(p) = � �
1�� . To

see this, let p = ep(�) and q = eq(�). Then
elpq(p) = elpeq(ep�1(p))

=
el�eq(�)
el�ep(�) :

Since el�eq(�) = �� and el�ep(�) = el�[�eq(�)] = 1 � �, it follows that elpq(p) = � �
1�� . The

result thus follows.

Appendix 2: Unique cut-o¤ level

De�ne

	("c) = y + "c + e("c)�  (e("c))� (r + s)U � �
1�H("c)

h("c)
 0(e("c))=: (32)
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Equation (32) determines a unique "c i¤	("c) = 0 is uniquely de�ned.

d	("c)

d"c
= 1 + 

de

d"c
�  0(e("c))

de

d"c
� �

 0(e("c))



d1�H("c)
h("c)

d"c
� �

1�H("c)

h("c)

 00(e("c))



de

d"c
:

Inserting �� 1�H("c)
h("c)

 00(e("c))= =  0(e("c)) �  (equation 20) and using that h has an in-

creasing hazard rate yields:

d	("c)

d"c
= 1� �

 0(e("c))



d1�H("c)
h("c)

d"c
> 0:

Thus, 	("c) is strictly increasing on ["; "]. Hence, 	("c) = 0 is uniquely de�ned.

Appendix 3: Proof of Proposition 2

We �rst show the following property:

Property 1: The cut-o¤ level "c is increasing in � (for a given U).

Proof. Taking the partial derivative of (32) with respect to � gives

d	

d�
= ( �  0(e("c))

de

d�
� �

1�H("c)

h("c)

 00(e("c))



de

d�
� 1�H("c)

h("c)

 0(e("c))



= �1�H("c)

h("c)

 0(e("c))


< 0

(where we have used the �rst-order condition 20). Di¤erentiating the cut-o¤ equation 	 = 0

and using that @	
@"c

> 0 gives
d"c
d�

= �
@	
@�
@	
@"c

> 0:

Property 1 thus follows.

Proof of Proposition 2b). Since the rent-constraint is binding by de�nition, it directly

follows that Smax(R;U) is strictly increasing in R. To show that Smax(R;U) is concave in

R, it is su¢ cient to show that �(R;U) is decreasing in R. Consider an increase in R and

suppose instead that � increases. From Property 1, we know that "c is increasing in �.

From (20) and the assumptions on  , it follows that e(") is strictly decreasing in � for all

" < ". From (C6), it then follows that the expected rent is strictly decreasing, which is a

contradiction.

Proof of Proposition 2a). We have just seen from the proof of 2b) that � is strictly

decreasing in R and that e(") is strictly decreasing in � for all " < ". It follows that e(") is
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strictly increasing in R for all " < ". Since � is decreasing in R, it follows from Property 1

that "c is decreasing in R:

Proof of Proposition 2c). The results in part c) directly follows from the fact that when

"c = ", U only in�uences the maximization problem through the participation constraint

!(") = (r + s)U . The �rst-order condition for optimal e¤ort as well as � is independent of

U .

Appendix 4: Proof of Lemma 2

We want to show that the optimal time-independent contract is also optimal within the

larger class of time-dependent contracts. A similar proof, based on Baron and Besanko

(1984), can be found in Fudenberg and Tirole (1991, p. 299). To simplify the proof and

avoid uninteresting technicalities, we assume time to be discrete. We �rst consider the case

where the cut-o¤ level is ". This will be modi�ed at the end.

The revelation principle still holds. Hence, it is su¢ cient to study the set of contracts that

maps the worker�s (reported) type into a sequence of wages and e¤ort levels fwt("); et(")g1t=0,

where t denotes the tenure of the worker in question.

Let �t("; et) = y+ "+ et(")�wt("). The expected discounted pro�t to the �rm is given

by

� = E"�1t=0�t("; et)�
t;

where � = 1�s
1+r

is the discount factor, including the exit rate of the worker. The expected

discounted utility of a worker of type " who announce type e" is given by
W (";e") = �1t=0 [wt(e")�  ("; e(e"))] �t;

where

 ("; e(e")) �  (e(e")� "� e"

):

Incentive compatibility requires that " = argmaxe"W (";e"). Let W (") � W ("; ").

The optimal dynamic contract solves

max
fwt(");et(")g1t=0

E"�1t=0�t("; et)�
t

subject to
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� Incentive compatibility: " = argmaxe"W (";e"):
� Individual rationality: W (") � U for all ".. This constraint only binds for ":

Note that the participation constraint regards the expected discounted utility of all future

periods. It does not require that the utility �ow of employed workers is higher than the utility

�ow of unemployed workers in all periods. Thus, deferred compensation with an increasing

wage-tenure pro�le is allowed for.

Let Cd = fwdt ("); edt (")g1t=0 denote an optimal contract within the larger set of time-

dependent contracts, and let C� = fw�("); e�(")g1t=0 denote the time-independent contract.

We want to show that Cd is equivalent to C�, in the sense that it implements the same e¤ort

level in each period, the same discounted expected pro�t to the �rm and the same expected

discounted rents to the workers.

Suppose that Cd 6= C�. Then, Cd cannot implement a time independent e¤ort level,

as this contract is, by de�nition, dominated by the optimal static contract C�: Therefore,

suppose that Cd does not implement a time independent e¤ort level. We will show that this

leads to a contradiction.

To this end, consider the random time-independent stochastic mechanism CdS, de�ned as

follows: in each period, the contract (wdt ("); e
d
t (")) is implemented with probability

�t

1�� . By

de�nition, this contract is both incentive compatible and satis�es the individual rationality

constraint. Furthermore, it yields a higher expected pro�t to the �rm than the static contract

(w�("); e�(")); since Cd dominates C� and thus, contradicts the optimality of the latter

mechanism in the class of time-independent contracts. Thus, it follows that Cd = C�.

Finally, the same argument holds for any given cut-o¤ value "c and hence, the optimal

cut-o¤ level with time-dependent contracts must be equal to the optimal cut-o¤ level with

time-independent contracts.

Appendix 5: Equation (25)

Taking the �rst-order condition for the problem of maximizing V de�ned by equation

(19) gives

q0(p)p0(R)(Smax(R;U)�R)� q(1� SmaxR ) = 0;
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or, by simple manipulation,

elpq(p)elRp(R) = (1� SmaxR )
R

Smax �R
;

analogous to (31). By taking exactly the same steps as in Appendix 1, equation (25) follows.

Appendix 6

Let e" be a stochastic variable with �nite support and de�ne the stochastic matching term
as " = ke". We will show that there exists an interval (k; k) such that for any k in this interval
the following holds: 1) R > RF and 2) the cut-o¤ level is equal to ":

For su¢ ciently small values of k, we have that R < RF and �rst best e¤ort and hiring

are feasible with "c = ". De�ne k as the value of k such that R = RF . As workers have full

incentives, w0(y) = 1. Since �rms have a positive pro�t, it thus follows that y(") > w(");

otherwise �rms would obtain zero pro�ts. Thus, increasing the cut-o¤ level has a �rst-order

e¤ect on the expected surplus. Slightly reducing the incentive power of the contract only

gives a second-order e¤ect on the expected surplus. Thus, for values of k on an interval

above k, �rms reduce the incentive power of the contract below the �rst best and still hire

all types.

Appendix 7: Proofs related to information-neutral shifts when "c = "

Consider a positive shift in y. From Lemma 3, we know that in equilibrium, U� is

maximized; hence, it is trivial to show that U� is increasing in y.

Suppose that S� shifts downwards following an increase in y. From equation (27) and (28)

and the following discussion it follows that R� decreases, the worker�s share of the surplus

increases, and thus that S� � R shifts downwards. The free-entry condition then implies

that p falls. But then from equation (5) U� must fall, which is a contradiction.

The proofs regarding shifts in z, c and A are analogous.

Appendix 8: Proof of Proposition 5

Consider �rst a shift in y. We want to show that "c decreases in y. Suppose �rst that

� is constant, independent of y. Then, e¤ort is also independent of y. Taking derivatives of

(32) gives
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@	

@y
= 1� (r + s)

dU�

dy
;

(where the partial derivatives re�ect that "c is kept constant). Since U� is maximized it

follows from the envelope theorem that (r+s)dU
�

dy
< 1, and thus that @	

@y
> 0. Di¤erentiating

the cut-o¤ equation 	 = 0 and using that @	
@"c

> 0 gives

d"c
dy

= �
@	
@y

@	
@"c

< 0:

Suppose then that d�
dy
< 0. From Property 1 in Appendix 3, we know that "c is increasing

in � (even when the e¤ect of an increase in � on e is taken into account). Thus, a fall in �

exacerbates the negative e¤ect of y on "c.

Finally, suppose that d�
dy

> 0 (this cannot be ruled out). We want to show that "c is

still decreasing in y. Suppose not. From equation (20), it follows that e(") is decreasing in

� for all worker types. From (C6) it then follows that R� decreases and from (6) that S�

falls. Furthermore, if � increases and "c increases, using exactly the same argument as in

Appendix 7, this leads to a contradiction.

To show the results for z, c and A, we proceed in exactly the same way, and it is

therefore su¢ cient to study the e¤ects of changes keeping � constant. Taking the derivative

of 	 de�ned by (32) with respect to z ; c and A then gives

@	

@z
= �(r + s)

dU�

dz
< 0:

@	

@c
= �(r + s)

dU�

dc
> 0

@	

@A
= �(r + s)

dU�

dA
< 0:

Di¤erentiating the cut-o¤ equation 	 = 0 and using that @	
@"c

> 0 gives that "c is increasing

in z and A and decreasing in c. The argument if d�
dz
6= 0; d�

dc
6= 0; d�

dA
6= 0 proceeds in exactly

the same way as for changes in y.

Appendix 9:

Here we show that an increase in k increases SmaxR (R;U) (i.e., increases �) if b � 1=2. In

the proof of Proposition 2 part b (see Appendix 3) we showed that � is decreasing in R. It
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is thus su¢ cient to show that for a given �, an increase in k implies that the rent-constraint

de�ned in equation (C6) is no longer satis�ed as the right-hand side increases.

From equation (24), it follows that

(r + s)R =

Z k

�k
b(")(1�H)d":

As " = k�, H(") = eH("=k), it follows that
(r + s)R =

Z 1

�1
kb(k�)(1� eH(�))d�: (33)

From equation (23) we have that (since h(") = eh("=k)=k)
b(k�) = 1� �k

1� eH(�)eh(�)  00(e(k�))

2
: (34)

We will show that b(k�) is decreasing in k. Suppose not. Then e(k�) increases and hence,

also  00(e(k�)), in which case the right-hand side of equation (34) decreases, and we have

derived a contradiction.

Inserting (34) into equation (33) gives

(r + s)R =

Z 1

�1
k[1� �k

1� eH(�)eh(�)  00(e(k�))

2
](1� eH(�))d�:

Taking the derivative with respect to k gives

d(r + s)R

dk

=

Z 1

�1
[1� 2�k1�

eH(�)eh(�)  00(e(k�))

2
� k2�

1� eH(�)eh(�)  000(e(k�))

2
de(k�)

dk
](1� eH(�))d�

>

Z 1

�1
[1� 2�k1�

eH(�)eh(�)  00(e(k�))

2
](1� eH(�))d�

=

Z 1

�1
[2b(k�)� 1](1� eH(�))d�:

To obtain this result, we have used that de(k�)
dk

< 0 (since b(k�) is decreasing in k) and that

 000 is positive. Finally we have inserted b from equation (34). Hence, a su¢ cient condition

ensuring that an increase in k increases R for a given � is b � 1=2.

Appendix 10: Proof of Proposition 6.
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First, we show that dey(k)
dk

= 0. Write ey(k) as
ey(k) = Z 1

�1
[y + k�+ e�(k�; k)�  (e�(k�; k))]d eH(�);

where e�(k�; k) denotes the e¤ort level prescribed by the optimal contract as a function of

� and k. At k = k, e� maximizes ey(k), and due to the envelope theorem, it follows that we
can ignore the e¤ects of a change in k on e�. Thus,

dey(k)
dk

=

Z 1

�1
�d eH(�) = 0:

The next step is to show that the equilibrium responses of U and S to a change in k at k = k

are zero. Taking the derivative of (19) for a given U� and using the envelope theorem gives

r
dV max

dk
= q(R�)

@Smax(R; �; k)

@k
=
dey(k)=(r + s)

dk
= 0:

Hence, V max(U) does not shift, and from the equilibrium equation (15), we have that U�0(k) =

0. Finally, we can write S�(k) = Smax(R�; U�; k), and since SmaxR = 0 at R = R it follows

that S�0(k) = 0.

Thus, it is su¢ cient to show thatR� increases (and thus p decreases and hence u increases,

see equation 7). We write R� = R�(k): At k = k, the derivative of R�(k) may not exist.

De�ne R�0(k) = lim
k!k

+ R�0(k). We want to show that R�0(k) > 0. Write the shadow value

of rents, � as a function of R and k, � = �(R; k). Since S� is constant, we know from

equation (26) that R�0(k) > 0 if and only if

@�(R; k)

@k
� lim

k!k
+

@�(R; k)

@k
> 0:

From equation (24), it follows that

R =

Z k

�k
b(")(1�H("))d":

Suppose now, contrafactually, that b(") = b̂ for all ", where b̂ is a constant in (0; 1]. Then

R = b̂k:
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At k = k, we know that b = 1 for all " and thus, that R� = R = k. Taking the derivative

of bb with respect to k, still assuming b̂ to be constant over types gives
b̂0(k)jR=k = �

1

k
< 0:

For k < k, we know that b is not constant in ". However, it follows that db(")
dk
jR=k � b̂0(k)jR=k

for some ". Furthermore, since b(") is increasing in " for all k < k, it follows that the absolute

value of db(")
dk
jR=k is largest at " = "; hence db(")

dk
jR=k < � 1

k
< 0. From equation (23) we know

that this can only be true if @�(R;k)
@k

> 0. The result thus follows.

Appendix 11: Proof of Lemma 4

Here, we show that an increase in  increases SmaxR (R;U) (i.e., increases �). In the proof

of Proposition 2 part b (see Appendix 3), we showed that � is decreasing in R. It is thus

su¢ cient to show that for a given �, an increase in  implies that the rent-constraint de�ned

in equation (C6) is no longer satis�ed as the right-hand side increases. Thus, it is su¢ cient

to show that a positive shift in , for a given �, increases b(") for all ".

The �rst-order condition for e¤ort (20) reads

[1�  0(e("))= � �
1�H(")

h(")
 00(e("))=2] = 0:

It is su¢ cient to show that an increase in , keeping b(") =  0(e("))= constant, increases

the LHS of the above equation. The second-order conditions then ensure that  0(e("))=

increases. Substituting in b(") =  0(e("))= gives

[1� b(")� �
1�H(")

h(")

 00(e("))b(")2

 0(e("))2
] = 0:

For a given b, e is increasing in , and it follows that the left-hand side is increasing in e

provided that  00(e("))
 0(e("))2 is decreasing in e.

Appendix 12: Proof of Lemma 5

a) Note that H(") = eH("=k) = eH(�) and that h(") = eh(�)=k. Inserting this into (32)
gives
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	 = y + k�c + e(k�c)�  (e(k�c))� (r + s)U� � �k
(1� eH(�c))eh(�c)  0(e(k�c))


: (35)

We proceed in the same way as in Appendix 8. We �rst want to show that 	 decreases

in k for a given �: From Appendix 8 (and Appendix 3), we know that if 	 falls, so do "c (for

a given �). Denote the �rst terms in (35) by FT ,

FT = y + k�c + e(k�c)�  (e(k�c))� (r + s)U�

It follows that

@FT

@k
= �c + ( �  0(e))

@e(k�c)

@k
:

From Appendix 9, we know that b(k�c) decreases in k and hence that e(k�c) decreases in k.

Since  �  0(e) > 0; FT is decreasing in k provided that �c � 0.

Denote the last term in (35) by ST .

ST = ��k (1�
eH(�c))eh(�c)  0(e(k�c))



= ��k (1�
eH(�c))eh(�c) b(k�c)

= ��k (1�
eH(�c))eh(�c) [1� �k

(1� eH(�c))eh(�c)  00(e(k�c))

2
]

= �a1k[1� a2k].

where a1 = � (1�
eH(�c))eh(�c) and a2 =

(1� eH(�c))eh(�c)  00(e(k�c))
2

. Now

@ST

@k
= �a1[1� 2ka2] + a1k

2@a2
dk

:

Since e(k�) is decreasing in k we know that  00(e(k�c)) is decreasing in k and hence, that
@a2
dk

< 0. A su¢ cient condition for ST being decreasing in k is thus that 1 � 2a2k > 0, or

a2k < 1=2. Since b(k�c) = 1 � a2k, this holds if and only if b(k�c) > 1=2, which is true by

assumption.
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Di¤erentiating the cut-o¤ equation 	 = 0 and using that @	
@"c

> 0 then gives that "c is

increasing in k.

Suppose then that the equilibrium value of � increases. Then, we know from Property

1 in Appendix 3 that this will increase "c even further. Suppose then that � decreases. By

applying exactly the same argument as in Appendix 8, it follows that "c must increase.

Result b). We use the same method as above. Consider 	("c) de�ned by equation (32).

For a given �, we know from Appendix 11 that an increase in  leads to an increase in b(")

for a given �. Hence the last term of (32) decreases in . Due to our normalization that U�

is constant, the derivative of the �rst terms with respect to  is zero. Thus, "c increases in

. If � increases, we know from Property 1 that this increases "c even further. Hence, it

only remains to show that "c increases even if � falls. If � decreased, an identical argument

to that given in Appendix 8 shows that "c increases also in this case.
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