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1 Introduction

There exists a large literature analyzing the e¤ects of search frictions in

the labor market. In this literature �rms are typically modelled in a rather

parsimonious ways. In particular agency problems between workers and �rms

are ignored. The focus is thus solely on the e¤ects of search frictions on the

�ows into and out of employment.

In this paper we dig deeper into the relationship between the worker and

the �rm. First, we introduce a moral hazard problem by letting a worker�s

work e¤ort to be unobservable to the �rm. Second, we assume that a worker

also has private information regarding her productivity in that particular

job. The �rm acts as a principal and chooses a wage contract that maximizes

pro�ts given the information constraints. Our aim is to analyze the interplay

between search frictions in the market place and agency problems created by

private information within the �rm.

Search frictions and agency problems interact because of the amount of

"rents" that accrue to the worker. A worker�s private information gives her

an information rent, which is larger the closer wages are linked to the workers�

output. When the �rm sets the wage contract, it trades o¤ incentives for the

worker to provide e¤ort and rent extraction from the worker. However, when

there is search frictions in the labor market, more rents to the worker also

bene�ts the �rm as it speeds up the hiring process. Hence, it is less costly

for a �rm to provide workers with incentives when operating in a frictional

market rather than in a frictionless market.

We show that the resulting search equilibrium, which we refer to as gen-
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eralized competitive search equilibrium, has a simple form, and is charac-

terized by a modi�ed Hosios Rule that determines the constrained e¢ cient

resource allocation. When the information constraints are tight in a well-

de�ned sense, the optimal wage contract leaves a relatively large amount of

rents to the employees. As a result, pro�t will be lower, and fewer resources

are used to create new jobs.

We then analyze the e¤ects of changes in the macroeconomic environ-

ment on the wage contract and the unemployment rate. First we analyze

the e¤ects of negative productivity changes where all �rms are hit equally

hard. Such a negative shock tightens the constraints imposed by the workers�

private information, and the worker�s share of the match surplus increases.

Therefore, the unemployment rate becomes more responsive to such shocks

than in the standard search model. If the recession is caused by changes in

the information structure, or if worker e¤ort is more crucial after a negative

change, the responsiveness of the unemployment rate to negative shocks is

further increased and may be arbitrarily large.

Our model can thus contribute to the debate following Shimer (2005)

and Hall (2004a) who document that �uctuations in the unemployment rate

predicted by the model in response to observed productivity shocks are much

smaller than actual �uctuations in the unemployment rate, as wages in the

model absorb much of the shock. Note also that our analysis indicates that

a counter-cyclical sharing rule, where workers receive a larger share of the

surplus after a negative shock, may be an optimal response to information

problems between employers and employees.

Furthermore, we �nd that a positive productivity shock or a fall in un-
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employment bene�ts both tend to increase the incentive power of the wage

contract. In both cases the shift increases the average match surplus. As a

result, there are more rents available in the relationship, and therefore also

room for more high-powered incentive contracts. Similarly, an increase in

search frictions also tends to increase the incentive power of the wage con-

tract.

Our private information model builds on the procurement model by Laf-

font and Tirole (1993) and its adoption to a frictionless labor market by Moen

and Rosén (2006). As the emphasis in the present paper is on the interplay

between search frictions and wage contracts its analysis di¤ers radically from

that of Moen and Rosén (2006).

In a related model, Faig and Jerez (2005) analyze a retail market with

search frictions when buyers have private information about their willingness-

to-pay. Although their paper studies private information in a competitive

search environment, their model and emphasis di¤er from ours. They focus

on welfare analysis and abstract from moral hazard problems. Moreover,

they neither derive the modi�ed Hosios condition, nor analyze the impact of

macroeconomic variables on sharing rules and incentives.

Shimer and Wright (2004) consider a competitive search model where

�rms (not workers) have private information about productivity and workers

have private information about e¤ort. They show how private information

may distort trade, thereby increasing unemployment. However, the mecha-

nism in their paper di¤ers from ours. We focus on the division of the match

surplus between workers and �rms as an instrument to mitigate the ine¢ -

ciencies caused by private information, summarized in the modi�ed Hosios
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condition. This is absent in Shimer and Wright, who instead focus on the

direct e¤ect of the ine¢ ciencies created by two-sided private information on

unemployment and vacancy rates.

Several recent studies seek to make the search model consistent with

Shimer and Hall�s empirical �ndings. In Kennan (2004), workers and �rms

bargain over wages once they meet. Firms have private information in booms,

but not in recessions, and thus earn information rents in booms. This in-

creases the pro�ts in booms, and thus also unemployment volatility. Nagypál

(2004) and Krause and Lubik (2004) show that on-the-job search in a match-

ing model may amplify the e¤ects of productivity shocks on the unemploy-

ment rate. Menzio (2004) illustrates that �rms with private information

may �nd it optimal to keep wages �xed if hit by high-frequency shocks. In

Rudanko (2005) the e¤ect of risk averse workers and contractual incomplete-

ness on volatility is explored. Reiter (2007) shows that the responsiveness

of the unemployment may be increased if one allow for technological change

that is embodied into the match. Gertler, Sala and Triari (2007) explain wage

rigidity by among other things staggered wage contracts. For an extended

survey of this literature see Mortensen and Nagypál (2006).

Our model is also related to the literature on e¢ ciency wage models (e.g.

Weiss, 1980; Shapiro and Stiglitz, 1984). Some of these papers examine the

comparative static properties of e¢ ciency wage models, (Strand, 1992; Dan-

thine and Donaldson, 1990; Ramey and Watson, 1997; MacLeod, Malcomson

and Gomme, 1994; MacLeod and Malcomson, 1998). In a static model, Ro-

cheteau (2001) introduces shirking in a search model and shows that the

non-shirking constraint forms a lower bound on wages.
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The paper is organized as follows: Section 2 presents the model. The

generalized competitive search equilibrium is de�ned in section 3 and char-

acterized in section 4. In section 5 we apply the model and analyze the e¤ects

of macroeconomic variables on the wage contract and the unemployment rate.

Section 6 o¤ers �nal comments.

2 The model

The matching of unemployed workers and vacancies is modelled using the

Diamond-Mortensen-Pissarides framework (Diamond, 1982; Mortensen, 1986;

Pissarides, 1985) with competitive wage setting. The economy consists of a

continuum of ex ante identical workers and �rms. All agents are risk neutral

and have the same discount factor r. The measure of workers is normalized

to one. Workers leave the market at an exogenous rate s and new workers

enter the market as unemployed at the same rate. Abandoned �rms have no

value.

We study a segment of the labor market where workers have the same

observable characteristics.1 Still there is ex post heterogeneity. As in Jo-

vanovic (1979) and many subsequent papers (See Pissarides 2000, ch. 6

for an overview) we assume stochastic job matching, meaning that the pro-

ductivity of a given worker-�rm pair is match-speci�c. In addition, output

depends on worker e¤ort. The output y of a worker-�rm pair is

y("; e) = y + "+ 
e; (1)

1Workers with di¤erent observable (and contractible) characteristics would be o¤ered
di¤erent wage contracts. Furthermore, in competitive search equilibrium they search in
separated search markets and hence do not create search externalities towards each other.
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where y is a constant, " the match-speci�c term (or stochastic matching

term), and e worker e¤ort. The parameter 
 is a measure of the relative

importance of worker e¤ort. As is common in the stochastic matching lit-

erature, we assume " is i.i.d across all worker-�rm matches. (In footnote 5

we argue that our results also hold when allowing for some correlation of the

stochastic match component.) For any given match, " is constant over time

and continuously distributed on an interval ["; "] with cumulative distribution

function H, density function h, and with increasing hazard rate.

Output is observable to both the worker and the �rm. However, as in most

models of optimal wage contracts the worker (the agent) has an information

advantage over the �rm (the principal) �we assume that only the worker can

decompose output y into e¤ort e and the stochastic matching term ".

As output is contractible, wage contracts are contingent on y. The utility

�ow of a worker is given by

! = w �  (e); (2)

where w denotes the wage (we suppress the functional dependence on y) and

 (e) the cost of e¤ort. The function  (e) is increasing, and its derivative

 0(e) is increasing and convex in e: When a worker and a �rm meet, the

worker learns " and then decides whether to accept or reject the contract.

As wages depend on y, a worker chooses her e¤ort level such that dw
dy
=  0(e)..

For any given wage contract, there exists a cut-o¤ value "c � " such that

a worker accepts a job if and only if " � "c. If she rejects the contract she

starts searching again, and the job remains vacant.

We know from the revelation principle that any output-dependent con-
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tract can be represented as a contract of the form � = (w("); e("); "c), which

satis�es the incentive compatibility constraint and the participation con-

straint of the worker, to be de�ned below. In what follows we de�ne wage

contracts on this form. We do not consider tenure-dependent contracts. This

is without loss of generality, as we show later that the optimal contract is

tenure-independent.

Let u denote the unemployment rate and v the vacancy rate in the econ-

omy. Firms are free to open vacancies at no cost, but maintaining a vacancy

entails a �ow cost c. The number of matches is determined by a concave,

constant return to scale matching function x(u; v). Let p denote the match-

ing rate of workers and q the matching rate of �rms. Since the matching

function has constant return to scale, we can write q = q(p), with q0(p) < 0.2

Before we continue we want to make two comments regarding the set-up,

both related to the match-speci�c term ". The �rst comment regards the

exact timing of when a worker learns the match speci�c productivity term

". We assume that a worker learns " before the contract is signed. This

sequence rules out up-front payments from the worker to the �rm before the

worker learns ". If up-front payments are not admitted, it is su¢ cient that

the worker learns " after exerting e¤ort and observing y.

The second comment regards our assumption that the match-speci�c pro-

ductivity term is unobservable to the �rm. An alternative interpretation is

that �rms, although able to observe ", are unwilling or unable to di¤erentiate

output-contingent wage contracts between workers with the same observable

2The probability rates p and q can be written as p = x(u; v)=u = x(1; �) = ep(�) and
q = x(u; v)=v = x(1=�; 1) = ~q(�). The matching technology can thus be summarized by a
function q = ~q(�) = ~q(ep�1(p)) = q(p).
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characteristics but with di¤erent stochastic matching terms. Di¤erent wage

contracts would here mean o¤ering less attractive contracts to workers with

a high stochastic match term. Evidence that workers with di¤erent produc-

tivity work under the same bonus scheme is given in e.g., Lazear (2000).

Asset value equations

The asset value equations de�ne the parties�payo¤s for a given wage con-

tract � = (w("); e("); "c). Let U denote the expected discounted utility of

an unemployed worker and fW (") the expected discounted utility of an em-
ployed worker with a match-speci�c productivity term ", hereafter somewhat

imprecisely referred to as her type. Then fW (") is de�ned as
(r + s)fW (") = w(")�  (e(")):

The expected discounted value of a worker being matched is

W =

Z "

"c

fW (")dH +H("c)U:

The expected discounted utility of an unemployed worker is given by

(r + s)U = z + p(W � U),

where z is the utility �ow when unemployed.

Let V denote the expected discounted value of a �rm with a vacancy andeJ(") the expected discounted value of a �lled job with a worker of type ",
where eJ(") is de�ned as

(r + s) eJ(") = y(e("); ")� w("):
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The expected value of a �rm being matched is

J =

Z "

"c

eJ(")dH +H("c)V

=

Z "

"c

y(e("); ")� w(")

r + s
dH +H("c)V: (3)

The value of a vacancy can thus be written as

rV = �c+ q(J � V ):

For our subsequent analysis it is convenient to use the concept of worker

rents associated with a match. The rents from a match re�ect the workers�

expected "capital gain" of being matched to a vacancy. Note that the ex-

pected rent associated with a match may be lower than the expected rent

associated with employment, because not all matches need to end up in em-

ployment. The expected worker rents of a match can be expressed as

R � W � U

=

Z "

"c

[
w(")�  (e("))

r + s
� U ]dH: (4)

Using the de�nition of worker rents, the expected income of an unemployed

worker takes a particularly simple form

(r + s)U = z + pR: (5)

That is, the �ow value of an unemployed worker is equal to the utility �ow

when unemployed plus the expected gain from search, which is equal to the
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matching rate times the expected rent associated with a match. The total

expected surplus of a match is S � J � V + R, or (using equations (3) and

(4))

(r + s)S =

Z "

"c

[y(e("); ")�  (e("))� (r + s)U � (r + s)V ]dH: (6)

3 Generalized competitive search equilibrium

Our equilibrium concept is the competitive search equilibrium (Moen 1997),

which combines competitive price determination and search frictions. One of

its core element is the unique relationship between the attractiveness of the

o¤ered wage contract and the expected rate at which the vacancy is �lled.

This relationship can be derived in several alternative settings. Moen (1997)

assumes that a market maker creates submarkets, and shows that the same

equilibrium can be obtained if �rms advertise wages. This interpretation is

further developed in Mortensen andWright (2002). Mortensen and Pissarides

(1999, section 4.1) interpret the market maker as a �middle man�(like a job

center) that sets the wage. In Acemoglu and Shimer (1999a and 1999b)

the labor market is divided into regional or industrial submarkets o¤ering

potentially di¤erent wages. In the present paper we choose the interpretation

that �rms advertise wage contracts.

To characterize the unique relationship between the wage contract and

the arrival rate of workers, let U� denote the equilibrium utility of a searching

worker. The queue length of workers adjusts so that any worker who applies

to any given �rm must get an expected utility equal to U�. That is,
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z + pR = (r + s)U�; (7)

which de�nes a unique, decreasing relationship between R, the expected rents

associated with a match, and the probability rate p at which the worker is

matched. Since q = q(p), there is a unique relationship between the arrival

rate of applicants to a �rm and the value of rents that this �rm o¤ers; q =

q(p(R)).

Let � denote the set of wage contracts � = (w("); e("); "c) and let �D de-

note the set of feasible contract. With private information, a feasible contract

has to satisfy the incentive compatibility constraint and the participation

constraint of the worker, to be speci�ed below.

From the worker�s perspective, the attractiveness of a wage contract is

given by the expected value of being matched; W = U + R. For a given

U , the attractiveness of a wage contract can therefore be summarized by R.

Let �D(R) 2 �D denote the subset of feasible contracts that give the worker

an expected rent R:

A �rm chooses the wage contract � that maximizes V , taking U as given.

The value of a vacancy can thus be expressed as

rV = max
R

max
�2�D(R)

�c+ q(p(R))[J(�)� V ]: (8)

The solution procedure for the optimal contract can be decomposed into two

steps:

1. For a given R, solve for the contract � 2 �D(R) that maximizes J , the

value of a match to the �rm. Denote this optimal value by JD(R).
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2. Maximize the value of a vacancy V = �c + q(p(R))(JD(R)� V ) with

respect to R, where p(R) is de�ned by (7).

The resulting vacancy value can be written as V max(U). Free entry then

assures that

V max(U) = 0: (9)

De�nition. The generalized competitive search equilibrium (GCS-equilibrium)

is a vector (U�; R�; p�; ��) that solves the maximization problems 1 and 2

above and satis�es (9).

As a benchmark, we �rst solve for the equilibrium outcome in the special

case where " and e are observable and contractible. The contract still has

to satisfy the worker�s participation constraint. That is, fW (") � U for all

" � "c. The problem of maximizing J for a given expected rent R (step 1)

can be formulated as

max
w(");e(");"c

(r + s)J = max
w(");e(");"c

Z "

"c

[y + "+ 
e(")� w(")� (r + s)V ]dH

s.t.

(r + s)R =

Z "

"c

[w(")�  (e("))� (r + s)U ]dH (10)

fW (") � U 8" � "c: (11)

Suppose the participation constraint (11) does not bind for any " � "c. Sub-

stituting the rent constraint (10) into the maximand simpli�es the problem

to

max
e(");"c

Z "

"c

[y + "+ 
e(")�  (e("))� (r + s)U � (r + s)V ]dH � (r + s)R;
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with �rst order conditions

 0(e(")) = 
 for all "; (12)

y + "c + 
e("c)�  (e("c)) = (r + s)U + (r + s)V: (13)

The �rst equation determines the e¢ cient e¤ort level. The second equation

de�nes the e¢ cient cut-o¤level, which equalizes the worker�s net productivity

with the outside options. Note that the solution is independent of R. Since

workers are risk neutral, the participation constraint is easy to satisfy. For

instance, the �rm may set a constant wage, independent of worker type for

all " � "c, ensuring that the participation constraint never binds.

Consider now step 2 and let SF denote the full information match surplus.

The �rm maximizes the value of a vacancy. As JF � V = SF � R, the �rm

solves

max
R
�c+ q(p(R))(SF �R); (14)

where p(R) is de�ned by (7). In Appendix 1, we show that the optimal choice

of R satis�es the Hosios condition (Hosios, 1990)

RF

SF �RF
=

�

1� �
; (15)

where � denotes the absolute value of the elasticity of q with respect to

� = v=u. We refer to the equilibrium as the GCS -equilibrium with full

information and denote it by (UF ; RF ; pF ; �F ).
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4 Characterizing GCS-equilibrium

When e and " are private information, we have to specify the relevant incen-

tive compatibility constraint, which ensures that a worker has an incentive

to truthfully reveal her type. In Appendix 2, we show that this incentive

compatibility constraint can be expressed as

!0(") =  0(e("))=
; (16)

where ! is the utility �ow of the worker as de�ned by equation (2). If a

worker�s type increases by one unit, she can reduce her e¤ort by 1=
 units

and still obtain the same output, thereby increasing her utility by  0(e("))=


units. Incentive compatibility requires that the worker obtains the same gain

by reporting her type truthfully.

Using equation (16) the rent to a worker of type ", eR("); can be written
as

(r + s) eR(") = Z "

"c

 0(e("))



d"+ (r + s) eR("c): (17)

The participation constraint requires that !("c) = (r+ s)U for "c > ", henceeR("c) = 0 for "c > ". Note that contracts that prescribe more e¤ort from

low-type workers must give larger rents to high types to keep the incentive

compatibility constraint satis�ed.

A �rst question that arises is whether the GCS-equilibrium with full in-

formation (UF ; RF ; pF ; �F ) is still feasible.
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Lemma 1 a) For "Fc > " the GCS-equilibrium with full information is not

feasible when " and e are private information to the worker.

b) For "Fc = " the GCS-equilibrium with full information is feasible with

private information if and only if RF > R, where

R =

Z "

"

"� "

r + s
dH("):

Proof. a) Suppose the full information equilibrium is feasible. Denote the

full information output level by yF . The participation constraint (11) and

equation (13) imply that yF ("c) = w("c) (since V = 0 in equilibrium). From

equations (17), (12) and (1) it follows that (r + s) eR0(") = 1 = dy=d" (full

incentives). As a result, yF (") = w(") for all " � "c, and thus pro�ts are zero.

Hence, no �rm enters the market, which is inconsistent with equilibrium.

b) For "c = " the participation constraint allows that (r + s)U < yF (")

and hence that w("c) < yF ("c). Since the �rst-best e¤ort level implies that

 0(e(")) = 
, the incentive compatibility constraint requires that eR(") � "�"
r+s
.

To implement the full information equilibrium with private information, we

must thus have that RF � R. If RF > R, the full information equilibrium

can be implemented by setting eR(") = RF �R.

In what follows we consider the case where RF < R. We derive the

equilibrium by following the two-step procedure laid out above.

Step 1: Optimal wage contracts given R The �rm chooses the contract

that maximizes J given R. Clearly, this is equivalent to the problem of

maximizing S = J�V +R given R. We maximize the match surplus S rather

than J , as this o¤ers a more interesting interpretation of the Lagrangian
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parameter. Equations (1) and (6) imply that the �rm�s problem is

max
w(");e(");"c

Z "

"c

[y + "+ 
e(")�  (e("))� (r + s)U � (r + s)V ]dH,

s.t.

!0(") =  0(e("))=
;

!("c) = (r + s)U;

(r + s)R =

Z "

"c

[!(")� (r + s)U ]dH; (18)

where we have used that the rent constraint always binds. This is an optimal

control problem with e as the control variable and !(") as the state variable.

Denote the Lagrangian parameter associated with the rent constraint (18)

by � and the solutions to S by SM(R;U):

Proposition 1 The optimal contract �M(R;U) is de�ned by

a) The �rst order condition for the e¤ort level:


 �  0(e(")) = �
1�H(")

h(")
 00(e("))=
 (19)

b) The optimal cut-o¤ level, given by either "c = " or

[y+"c+
e("c)� (e("c))�(r+s)U�(r+s)V ]h("c) = �(1�H("c))
 0(e("c))



(20)

c) The rent-constraint de�ned by equation (18).

Proof. See Appendix 3.

In order to understand the conditions, recall that � denotes the shadow

�ow value of worker rents for the match surplus SM(R;U). More precisely,
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(r + s)SMR = �,

where the subscript R denotes the derivative with respect to R.3

The two �rst-order conditions generalize optimal contracts with private

information (as in e.g. La¤ont and Tirole, 1993) for a setting with search

frictions. Without frictions the shadow value of rents � would be equal to

1. For � = 0, the �rst-order conditions coincide with those of the full-

information case. As shown above, this is only feasible when RF � R.

Consider the optimal e¤ort equation (19) and suppose the e¤ort level

of a type "̂ worker increases by one unit. The left-hand side of equation

(19) captures the resulting e¢ ciency gain 
 �  0(e("̂)). The right-hand side

captures the costs associated with an increase in e¤ort. A one unit increase

in e¤ort of a type "̂ worker increases the rents of all workers above "̂ by

 00(e("̂))=
 units (from equation 17) and the shadow value of this rent is �.

The likelihood of obtaining a worker of type "̂ is re�ected in h("̂), while the

measure of workers with higher match-speci�c productivity is 1�H("̂). This

explains the factor (1�H("̂))=h("̂).

The left-hand side of the cut-o¤ equation (20) shows the net productivity

loss of increasing "c. The right-hand side represents the gain in terms of

reduced rents, which have a shadow �ow value �. In Appendix 4, we show

that the cut-o¤ level is unique for a given �.

Let (a; b) denote a linear contract of the form w = a + by. It is well

known that the optimal non-linear contract can be represented by a menu

3Given that h has an increasing hazard rate ((1 � H("))=h(") decreasing in ") and
 000(e) � 0 the equation (19) implies that e(") is increasing in ".
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(a("); b(")) of linear contracts.4 For any b, the worker chooses the e¤ort level

such that  0(e) = b
. Inserting this condition into equation (19), we obtain

b(") = 1� �
1�H(")

h(")

 00(e)


2
: (21)

We refer to b(") as the incentive power of the optimal contract.

Proposition 2 SM and �M have the following properties:

a) The e¤ort level e(") is strictly increasing in R for all ", and the cut-o¤

level "c is decreasing in R.

b)The match surplus SM(R;U) is increasing and concave in R.

c)If all types are hired ("c = "), then

i) a shift in U shifts a(") but leaves b(") unchanged for all ".

ii) a shift in U does not in�uence the marginal value of rents, i.e.,

SMRU = 0.

Proof. See Appendix 5.

First consider result a). When the principal has more rents to dole out,

she can a¤ord to give stronger incentives to all workers. Furthermore, as the

expected rent is decreasing in the cut-o¤ level, a higher R also implies that

the principal can a¤ord to hire workers of a lower types, by reducing "c. The

Proposition states that the principal does both.

The �rst part of b), that the match surplus, SM , increases in R, follows

directly from the fact that the rent constraint bind. The second part of b),

that SM is concave in R, follows from the convexity of the maximization

4See, e.g., La¤ont and Tirole, 1993.
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problem, i.e. that the marginal return from higher e¤ort or a lower cut-o¤

level is decreasing.

Result c) states that if all workers are hired, the workers�outside option

U does neither in�uence the incentive power of the contract nor the shadow

value of rents. Intuitively, for a given cut-o¤, a change in U (for a given R)

only implies that more income is transferred to the worker, and e¤ort level

stays constant for all types. This property of the optimal contract will be

used extensively below.5

Above we have derived the optimal static (tenure independent) contract.

Lemma 2 The optimal dynamic contract repeats the static contract, pro-

vided that the �rm can commit not to renegotiate the contract.

Proof. See Appendix 6.

Providing incentives is costly for �rms, as it yields information rents to

the inframarginal workers. Deferred compensation or other time dependent

wage contracts do not reduce this information rent, as they do not reduce

the rent high types can obtain by pretending to be low types. Furthermore,

deferred compensation does not in�uence the participation constraint at the

hiring stage. It may loosen the participation constraint for tenured workers,

but this has no value to the �rm as the worker�s outside option is time

independent.

5 If the match productivities " where correlated between �rms, a worker�s outside option
would increase with ". However, U 0(") < 1=(r + s) would still hold and U 0(") would be
smaller when the correlation is weaker. The incentive compatibility constraint would be
unaltered. Furthermore, the participation constraint would still only bind for the lowest
type provided that the correlation is not too high. Hence, our main argument would still
hold. However, the rents associated with a given contract and thus also R would be lower.
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Step 2: Optimal sharing rules A �rm maximizes V (R) de�ned by

rV (R) = �c+ q(p(R))(JM(R;U)� V )

= �c+ q(p(R))(SM(R;U)�R); (22)

where p(R) is de�ned by equation (7). This problem is similar to the max-

imization problem under full information, de�ned by equation (14). The

only di¤erence is that the match surplus is now increasing in R, so that
@JM (R;U)

@R
= SMR � 1 > �1. In Appendix 7, we show that the �rst order

condition for the step 2 maximization problem satis�es

(1� SMR )
R

SM �R
=

�

1� �
; (23)

where � denotes as before the absolute value of the elasticity of q with respect

to � = v=u. We refer to this equation as the modi�ed Hosios condition. We

denote this generalized competitive search equilibrium by (U�; R�; p�; ��).

Proposition 3 The generalized competitive search equilibrium satis�es the

modi�ed Hosios condition.

The modi�ed Hosios condition states that the workers�s share of the match

surplus increases with the marginal value of worker rents, SMR . Thus, a

smaller fraction of the match surplus is allocated to job creation. When SMR =

0, equation (23) is identical to the Hosios condition with full information

given by equation (15). With full information, a wage increase is purely

redistributional. It reduces the value of a match for the �rm by exactly the

same amount as it increases its value to the worker. With private information
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this no longer holds. A one unit increase in R increases the match surplus

SM by SMR units, thereby reducing the �rm�s wage cost by 1� SMR units.

The competitive search equilibrium with full information maximizes the

asset value of unemployed workers given that �rms break even (Acemoglu

and Shimer, 1999b). This property also holds for the GCS-equilibrium:

Lemma 3 The generalized competitive search equilibrium maximizes U given

the free entry constraint V = 0 and the relevant information constraints.

Proof. Suppose to the contrary. In this case there exists a wage contract ~�

such that U(~�) = ~U > U� and V = 0. By de�nition a �rm o¤ering ~� breaks

even at U = ~U . Thus, the �rm makes a strictly positive pro�t if it advertises

this contract when U = U� < ~U (recall that V only depends on U). But

then �� cannot be a pro�t-maximizing wage contract, a contradiction.

It is well known that the competitive search equilibrium may not be

unique, as our assumption regarding the matching function imposes few re-

strictions on the elasticity �(�). (If there are more than one equilibrium, they

all give rise to the same value of U and are thus equivalent from a welfare

point of view). When doing comparative static�s it is convenient that the

equilibrium is unique, and we therefore assume that the matching function

is Cobb-Douglas, x(u; v) = Au�v1��. It follows that � = �, and the modi�ed

Hosios condition is

(1� SMR )
R

SM �R
=

�

1� �
: (24)

Lemma 4 For x(u; v) = Au�v1��, the GCS-equilibrium uniquely determines

U�; R� and p�.
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Proof. The uniqueness of U� is ensured by Lemma 3. We will show that

(24) uniquely de�nes R. The uniqueness of p� is then ensured by equation

(7). For a given U = U� we know from Proposition 2b that (1 � SMR ) is

increasing in R. Since SMR < 1, SM � R is also decreasing in R. But then

the left-hand side of (24) is strictly increasing in R so that (24) has a unique

solution.

5 Applications

In this section we address the e¤ects of aggregate shocks on sharing rules

(wages), incentives, and unemployment. Instead of specifying a fully dy-

namic model, we analyze how parameter shifts change the wage contract and

the unemployment rate. Both Shimer (2005) and Mortensen and Nagypal

(2006) argue that the analysis of productivity shocks can be carried out with-

out explicitly modelling the dynamics. An adequate approximation is to do

comparative statics with respect to the productivity variable. Furthermore,

as our contribution is on the conceptual side rather than on the quantitative

side and we are able to get clear-cut analytical results we have decided not

to calibrate the model and do numerical simulations. We �rst assume that

all worker types are hired, i.e. "c = ". We return to the case with an interior

cut-o¤ level in section 5.3.6

In general, a shift in parameters changes the incentive power b(") of the

optimal contract even for given values of R and U ..... However, some shifts

do not, and we refer to these as information-neutral shifts. Such shifts only

6In Appendix 8 we show that "c = " and simultaneously RF < R is indeed possible.
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in�uence the incentive power of the wage contract through their e¤ects on R

and U . Information-neutral shifts are

� Changes in general (type- and e¤ort-independent) productivity y. This

may be interpreted as changes in input prices (e.g. oil prices).

� Changes in the value of unemployment bene�ts /value of leisure z.

� Changes in the search cost c and the matching function parameter A.

It follows directly from the �rst order condition for optimal incentive

power (equation 21) that these shifts do not in�uence b(")... By contrast,

shifts in the distribution of " and the importance of unobservable e¤ort, 
,

in�uences the optimal b(") directly.

As we will see, information-neutral shifts in productivity y with an ex-

ogenous cut-o¤ lead at most to rent rigidity. As shown in Brugerman and

Moscarini (2007), this is not su¢ cient to fully explain the Shimer paradox.

However, information changing shifts or information neutral shifts with an

endogenous cut-o¤ may cause output and worker rents to move in di¤erent

directions, thereby violating assumption 1a) in Brugerman and Moscarini.

We show that in this case there are no bounds on how large the e¤ects may

be.

5.1 Information-neutral shifts

The e¤ect of information-neutral shifts only depends on their e¤ect on the

equilibrium match surplus S� = SM(R�; U�). Let S�R � SMR (R
�; U�) and let

x denote (a vector of) information-neutral parameters in the model.
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Lemma 5 An information-neutral shift moves S�,R� and J� in the same

direction, i.e., dS�, dR� and dJ�all have the same sign.

Proof. See Appendix 9.

Proposition 4 Suppose a shift in an information-neutral parameter x in-

creases S�: Provided that "c = ", such a shift

a) reduces the worker�s share of the match surplus,

b) increases the incentive power b(") of the wage contract and hence also

e¤ort for all ".

Proof. From Lemma 5 we know that R� increases, and hence that SR

decreases. The worker�s share of the surplus is (from equation, 24)

R�

S� �R�
=

�

1� �

1

1� SR
;

which thus decreases in S�. Part a) of the proposition thus follows. From

Proposition 2a we know that an increase in R increases e(") for all " and

thereby also increases the incentive power b("). This proves part b).

An information-neutral change that increases the match surplus increases

the worker�s rents for a given sharing rule. Hence, the marginal value of

worker rents decreases, and in response the �rm reduces the share of the

surplus allocated to the worker.

Shifts in y: A shift in y has two e¤ects on S�. On the one hand,

it increases the value of a match, for a given U . On the other hand, it

increases the outside option U . However, since there is a time delay before an
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unemployed worker �nds a job, the former e¤ect dominates, and S� increases.

(See Appendix 10 for a formal proof.)

Thus, from Proposition 4 we know that a drop in y increases the worker�s

share of the surplus. This is an interesting observation, and is relevant for

the discussion about rigid wages following the �ndings in Shimer (2005). As

discussed in the introduction, Shimer documents empirical regularities of the

business cycle that the standard matching model of the labor market hardly

can account for. With private information, the workers�share of the surplus

is counter-cyclical. After a negative shock to y, the match surplus falls.

Hence, for a given sharing rule, the shadow value of worker rents increases.

As a result, �rms �nd it optimal to increase the worker�s share of the surplus.

Thus, wages are more rigid, and the unemployment rate more volatile than

in the standard model without private information. This result is related to

Hall (2005). He argues that due to social norms, the worker�s share of the

match surplus is counter-cyclical.7 Our model generates a counter-cyclical

sharing rule as an optimal response to changes in aggregate variables in the

presence of private information.

As a fall in y reduces S�, we have from Proposition 4 that the incentive

power of the equilibrium wage contracts measured by b(") falls for all ".

Loosely interpreted, the model thus predict that there should be less variable

pay when aggregate productivity is low.

Shifts in unemployment bene�ts. An increase in z, unemployment

bene�ts or value of leisure decreases S� (see Appendix 10). Intuitively higher

7Hall (2004b) also shows that wage stickiness may be the result of alternative speci�-
cations of the bargaining procedure or of self-selection among workers.
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unemployment bene�ts increase the workers�outside options, thus reducing

the available match surplus.

An increase in unemployment bene�ts thus has a direct and an indirect

e¤ect on the unemployment rate. The direct or standard e¤ect is that it

lowers the match surplus, leading to less entry for a given sharing rule. Our

new, indirect e¤ect from Proposition 4 is that the share of the match surplus

allocated to the worker increases, which further increases the unemployment

rate.

Proposition 4 also shows that there is a link between unemployment ben-

e�ts and the optimal wage contract. As z increases and S� falls, there are

less rents to the workers, and the incentive power of the wage contract falls.

Thus, our model predicts that higher unemployment bene�ts are associated

with less incentive pay and lower e¤ort provision.

Shifts in the search cost c and the matching technology parame-

ter A. An increase in search cost c increases S� (see Appendix 10). Again

the change has a direct and an indirect e¤ect on the unemployment rate, but

now they go in opposite directions. The direct (standard) e¤ect of an increase

in c is higher unemployment. For a given sharing rule, fewer �rms enter the

market and the unemployment rate increases. The indirect, countervailing

e¤ect is that the workers�share of the surplus falls (from Proposition 4). As

a result, private information tends to dampen the e¤ects of higher search

costs on the unemployment rate.

Since the rents that are allocated to worker�s in equilibrium increase, a

higher value of c implies that the wage contracts become more incentive-
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powered. If search costs are su¢ ciently large, it follows that RF > R, and

all workers are given �rst-best incentives.

An increase in A has the same e¤ect as a fall in c. As match surplus

increases, the worker�s share of the surplus decreases, and the incentive power

of the contract increases for all ".

When search frictions are high it is more important for �rms to speed

up the hiring process by o¤ering workers more rents. Thus, the cost of

providing incentives in terms of higher worker rents falls, and �rms increase

the incentive power of the contract.

5.2 Information-changing shifts

In this subsection we analyze the e¤ects of shifts that in�uence the optimal

contract directly (for given values of U and R).

Consider �rst a shift in the distribution of ". To this end, write the match-

speci�c productivity term as " = k�, where � is symmetrically distributed

on [�1; 1] and and k is a scalar. Let eH(�) denote the cumulative distribution
function of �. Let k denote the value of k such that R� = R (k is thus the

highest possible k for which the full-information equilibrium is feasible). We

study the e¤ects of an increase in k for k � k. On the one hand, an increase

in k increases the amount of private information workers possess. For a

given R, the incentive power of the wage contract thus decreases, which tend

to increase the marginal value of e¤ort and thus SMR . On the other hand,

an increase in k implies that more rents are needed to increase workers�
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incentives, which tends to reduce the value of SMR . It turns out that if the

private information problems are moderate (k relatively close to k), the �rst

e¤ect dominates, and an increase in k increases SMR . If private information

problems are more severe, an increase in k may reduce SMR . De�ne the

"average" incentive power as8

b =

Z "

"

b(")=("� ")d":

We show in Appendix 11 that a su¢ cient condition for ensuring that an

increase in k increases SMR is that b � 1=2. Note that if R is close to R, then

b is close to 1 for all ".

As long as "c = ", an increase in k reduces expected output: for a given

R, an increase in k implies that the optimal contract cuts back on worker

e¤ort, and output falls. The �rm may compensate by increasing R, but due

to the envelope theorem this has only a second order e¤ect on U�. Hence,

an increase in k decreases U�, and can thus be considered as a recession.

We want to illustrate with an example that the e¤ects of changes in the

information structure may lead to large changes in the unemployment rate

relative to the change in output per worker (net of e¤ort costs). To this end,

suppose k = k initially, such that the full information outcome is achievable

but with no slack. Let ey denote expected output net of e¤ort cost and recall
that u denotes the unemployment rate.

Proposition 5 Consider an increase in k, and suppose k = k initially. Let

8Note that b is generally not equal to the expected value of b, but is if " is uniformly
distributed.
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u(k) and ey(k) denote equilibrium values of u and ey. Then,
lim
k!k

+

du(k)

dey(k) =1:

Proof. See Appendix 12.

Let us next consider the e¤ects of shifts in the importance of unobservable

e¤ort 
.

Lemma 6 Given that "c = "; the marginal value of rents SMR (R;U) is in-

creasing in 
 provided that  00=( 0)2 is non-increasing in e.9

Proof. See Appendix 13.

An increase in 
 tends to increase output, and is in that sense a positive

shock. However, a shock may in�uence both y and 
. For instance, if a fall

in y is caused by an increase in input prices (e.g. oil prices) and e¤ort and

energy are substitutes, a fall in y goes hand in hand with an increase in 
.

Furthermore, the elasticity of the unemployment rate to average productivity

may be arbitrarily high if the fall in y and increase in 
 implies that average

productivity barely falls while the change in 
 is substantial.

More generally, information-changing shifts, if correlated with the busi-

ness cycle, may increase the volatility of the unemployment rate. If workers

have more private information during a downturn, or if unobservable e¤ort

is more important during a downturn, this will further increase the negative

e¤ect on the unemployment rate.

9This restriction is rather mild, and is satis�ed for most convex functions. For instance,
any polynomial of the form  (e) = en (n > 1) satis�es this condition, as well as the
exponential function exp e.
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Note also that for information-changing shifts the conditions in Bruger-

man and Moscarini (2007) are not satis�ed. For instance, the e¤ect of an

increase in k; for k close to k; is a decrease in average productivity together

with an increase in the expected rent. Hence, their assumption 1a is vio-

lated. The same may be true if a reduction in y goes hand in hand with an

increase in 
. This is also true for shifts in the cut-o¤ level discussed in the

next subsection.

5.2.1 E¤ects through the cut-o¤ level

So far we have assumed that all types are hired. In this subsection we brie�y

discuss the e¤ects of the same shifts when "c > ". To facilitate reading we

repeat the �rst-order condition for optimal cut-o¤ level "c.

y + "c + 
e("c)�  (e("c))� (r + s)U = �
(1�H("c))

h("c)
b("c): (25)

(where we have used that  0(e("c)) = 
b("c)). The left-hand side is the

match surplus associated with the marginal worker. It re�ects the cost of

increasing "c and thereby not realizing matches with positive match surplus.

The right-hand side re�ects the gain of increasing "c in terms of lower rents

for higher types that are hired.

Proposition 6 For information-neutral productivity shifts, a fall in y or a

rise in z increases the cut-o¤ level "c.. A fall in A or increase in c decreases

the cut-o¤ level.

Proof. See Appendix 14.
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A fall in y implies that the left-hand side of equation (25) falls (since

y falls more than (r + s)U). This tends to increase the cut-o¤ level "c.

Furthermore, we know that an increase in � also increases "c (Appendix 5).

A similar argument holds for shifts in z, A and c.

Thus, in all cases the e¤ects through the cut-o¤ level seems to exacerbate

our previous �ndings regarding the responsiveness of the unemployment rate

to shocks. In particular, a negative shift in y increases the cut-o¤ level, and

thereby leads to a further increase in the unemployment rate. However, there

is a caveat here: As "c shifts up after a fall in y, this tends to dampen the

increase in SMR , and S
M
R may even fall. However, this typically happens when

the increase in "c (and thus its adverse e¤ect on the unemployment rate) is

large.

Lemma 7 a) An increase in k reduces the proportion of accepted matches

provided that b("c) � 1=2 and "c is close to ".

b) Consider an increase in 
 combined with a reduction in y such that U�

is unchanged. This reduces the proportion of accepted matches provided that

 00=( 0)2 is non-increasing in e.

Proof. See Appendix 15.

The quali�er under point b) is needed because an increase in 
, in addition

to changing the information structure, also increases average productivity,

and the latter e¤ect tends to reduce "c.
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6 Final comments

In this paper we de�ne and characterize what we refer to as the generalized

competitive search equilibrium, in which workers have private information

regarding their e¤ort and "type". In our model, the �rms face a trade-o¤

between extracting rents from workers and providing incentives to exert ef-

fort. Search frictions imply that the cost of leaving rents to the worker is

lower than in the standard frictionless model, as worker rents save on search

costs for the �rms. We show that the resulting equilibrium satis�es what we

refer to as the modi�ed Hosios condition. We also analyze the equilibrium

e¤ects of changes in macroeconomic variables. Private information may in-

crease the responsiveness of the unemployment rate to productivity changes.

Furthermore, the incentive power of the wage contracts is positively related

to high productivity, low unemployment bene�ts and high search frictions.

We want to point out that our de�nition of the generalized competitive

search equilibrium is �exible, and can easily accommodate other forms of in-

centive problems. In a working paper version of this paper (Moen and Rosén

2006) we analyze both a model with shirking as in Shapiro and Stiglitz (1984)

and a model with non-pecuniary aspects of employment. For instance, in the

shirking model, workers are identical, but both worker e¤ort and output are

private information to the worker. E¤ort is either 0 or 1, and the e¤ort cost

is  . Let g denote the probability rate that a shirking worker is detected, in

which case she is �red. The non-shirking condition is then given by

 � gR:
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If we are in a region where the non-shirking constraint binds, the equilibrium

rent is determined by R� =  =g. A fall in y then has no impact on R�, and

we get complete rent rigidity.

It is our belief that developing search models with a richer structure than

the standard Diamond-Mortensen-Pissarides model may add new insights,

both within macroeconomics and di¤erent sub�elds of labor economics. In

previous studies, inclusion of human capital in search models have improved

our understanding of human capital formation. The present paper addresses

questions relevant for both macroeconomic �uctuation and personnel eco-

nomics within a search framework. Adding more structure to search models

may therefore be a fruitful avenue for future research.

Appendix

Appendix 1: Equation (15)

Taking the derivative of (14) with respect to R gives and utilizing that

V 0(R) = 0 in equilibrium gives

q0(p)p0(R)(SF �R)� q = 0 (26)

or, by simple manipulation,

elpq(p)elRq(R) =
R

SF (R)�R
: (27)

From (7) it follows that elRp(R) = �1. We want to show that elpq(p) = � �
1�� .

To see this, let p = ep(�) and q = eq(�). Then
34



elpq(p) = elpeq(ep�1(p))
=

el�eq(�)
el�ep(�) :

Since el�eq(�) = �� and el�ep(�) = el�[�eq(�)] = 1� �, it follows that elpq(p) =
� �
1�� . The result thus follows.

Appendix 2: Proof of equation (16)

A worker of type " that reports type e" receives a utility �ow given by
e!(";e") = w(e")�  (e(e")� "� e"



):

Truth-telling requires that " = argmaxe" e!(";e"). Since !(") = argmaxe" e!(";e")
it follows from the envelope theorem that

!0(") =
@e!(";e")
@"

���� e�=� ;
(since @e!(";e")

@e"
��� e�=� = 0). Hence

!0(") =  0(e("))=
:

Appendix 3: Proof of Proposition 1

The associated Hamiltonian is

H = [y + "+ 
e(")�  (e("))� (r + s)U � (r + s)V ]h(")

�� 0(e("))=
 � �[

Z "

"c

(!(")� (r + s)U)dH � (r + s)R]:
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The �rst order conditions for e(") can be expressed

(
 �  0(e("))h(") = � 00(e("))=
:

Furthermore,

�0(") = ��H=�! = ��h("):

Since " is free it follows that �(") = 0. Thus, � = �(1�H(")). Inserted, this

gives


 �  0(e(")) = �
1�H(")

h(")
 00(e("))=
:

The optimal cut-o¤ value "c is obtained by setting H = 0 and inserting that

!("c) = (r + s)U :

�[y+"c+
e("c)� (e("c))�(r+s)U�(r+s)V ]h("c)+�(1�H("c))
 0(e("c))



= 0:

Appendix 4: Unique cut-o¤ level

De�ne

	("c) = y+ "c+ 
e("c)� (e("c))� (r+ s)U ��
1�H("c)

h("c)
 0(e("c))=
 (28)

Equation (28) determines a unique "c i¤	("c) = 0 is uniquely de�ned.

d	("c)

d"c
= 1+


de

d"c
� 0(e("c))

de

d"c
�� 

0(e("c))




d1�H("c)
h("c)

d"c
��1�H("c)

h("c)

 00(e("c))




de

d"c
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Inserting ��1�H("c)
h("c)

 00(e("c))=
 =  0(e("c))� 
 (equation 19) and using that

h has an increasing hazard rate yields:

d	("c)

d"c
= 1� �

 0(e("c))




d1�H("c)
h("c)

d"c
> 0:

Hence, 	("c) = 0 is uniquely de�ned.

Appendix 5: Proof of Proposition 2

We �rst show the following property

Property P1: The cut-o¤ level "c is increasing in � (for a given U).

Proof. It is convenient to rewrite the cut-o¤ equation (20) as

y + "c � (r + s)U � (r + s)V = �
1�H("c)

h("c)

 0(e("c))



� (
e("c)�  (e("c))):

Denote the left-hand side by XL("c) and the right-hand side by XR("c;�).

Note that XL re�ects the costs while XR re�ects the gains from increasing

"c. Obviously X 0
L("c) = 1. As the second order condition must be satis�ed

locally, XL(") crosses XR(";�) from below. It is therefore su¢ cient to show

that around " = "c an increase in � shifts XR(";�) up.

@XR("c;�)

@�
=

1�H("c)

h("c)

 0(e("c))



+ �

1�H("c)

h("c)

 00(e("c))




de

d�

�(
 �  0(e("c)))
de

d�
:

From equation (19) we have that 
 �  0(e) = �1�H
h

 00



. Hence the two last

terms cancel out, and

@XR("c;�)

@�
=
1�H("c)

h("c)

 0(e("c))



> 0;
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completing the proof of Property P1.

Proof of proposition 2b). Since the rent-constraint by de�nition is bind-

ing, it follows directly that SM(R;U) increases in R. To show that SM(R;U)

is concave in R it is su¢ cient to show that � is decreasing in R. Consider an

increase in R and suppose to the contrary that � increases. From Property

P1 we know that "c is increasing in �. From (19) and the assumptions on  it

follows that e(") is decreasing in � for all ". From (17) it follows that the rent

for each type is decreasing, and thus that the expected rent is decreasing, a

contradiction.

Proof of proposition 2a) From the proof of 2b) it follows that � increases

inR, hence that e(") is strictly increasing in " follows directly from (19) (since

by assumption  0(e) is increasing and convex in e). That "c is decreasing in

R follows directly from Property P1 and that � is decreasing in R.

Proof of proposition 2c) The results in part c) follows directly from the

fact that when "c = ", U only in�uences the maximization problem through

the participation constraint !(") = (r + s)U . The �rst order condition for

optimal e¤ort as well as � is independent of U .

Appendix 6: Proof of Lemma 2

We want to show that the optimal time-independent contract is optimal

within the larger class of time-dependent contracts as well. A similar proof,

based on Baron and Besanko (1984) can be found in Fudenberg and Tirole

(1991, p. 299). To simplify the proof and avoid uninteresting technicalities

we assume that time is discrete. We consider �rst the case where the cut-o¤

level is ". This will be modi�ed at the end.
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The revelation principle still holds. Hence, it is su¢ cient to study the set

of contracts that map the worker�s (reported) type into a sequence of wages

and e¤ort levels fwt("); et(")g1t=0, where t denotes the tenure of the worker

in question.

Let �t("; et) = y + "+ 
et(")� wt("). The expected discounted pro�t to

the �rm is given by

� = E"�1t=0�t("; et)�
t

where � = 1�s
1+r

is the discount factor, including the exit rate of the worker.

The expected discounted utility of a worker of type " who announce type e"
is given by

W (";e") = �1t=0 [wt(e")�  ("; e(e"))] �t;
where

 ("; e(e")) �  (e(e")� "� e"


):

Incentive compatibility requires that " = argmaxe"W (";e"). Let W (") �

W ("; ").

The optimal dynamic contract solves

max
fwt(");et(")g1t=0

E"�1t=0�t("; et)�
t

subject to

� Incentive compatibility: " = argmaxe"W (";e")
� Individual rationality:W (") � U for all ". This constraint only binds

for ":
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Note that the participation constraint regards the expected discounted

utility of all future periods. It does not require that the utility �ow of em-

ployed workers is higher than the utility �ow of unemployed workers in all

periods. Thus, deferred compensation with increasing wage-tenure pro�le is

allowed for.

Let Cd = fwdt ("); edt (")g1t=0 denote an optimal contract within the larger

set of time-dependent contracts, and let C� = fw�("); e�(")g1t=0 denote the

time-independent contract. We want to show that Cd is equivalent to C�, in

the sense that it implements the same e¤ort level in each period, the same

discounted expected pro�t to the �rm, and the same expected discounted

rents to the workers.

Suppose Cd 6= C�. Then Cd cannot implement a time independent e¤ort

level, as this contract by de�nition is dominated by the optimal static con-

tract C�: Suppose therefore that Cd does not implement a time independent

e¤ort level. We will show that this leads to a contradiction.

To this end, consider the random time-independent stochastic mecha-

nism CdS, de�ned as follows: each period, the contract (wdt ("); e
d
t (")) is im-

plemented with probability �t

1�� . By de�nition, this contract is both incen-

tive compatible and satis�es the individual rationality constraint. Further-

more, it yields a higher expected pro�t to the �rm than the static contract

(w�("); e�(")); since Cd dominates C�, and thus contradicts the optimallity

of the latter mechanism in the class of time-independent contracts. It thus

follows that Cd = C�.

Finally, the same argument holds for any given cut-o¤value "c, and hence

the optimal cut-o¤ level with time-dependent contracts must be equal to the
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optimal cut-o¤ level with time-independent contracts.

Appendix 7: Equation (23)

Taking the �rst order condition for the problem of maximizing V de�ned

by (22) gives

q0(p)p0(R)(SM(R;U)�R)� q(1� SMR ) = 0

or, by simple manipulation,

elpq(p)elRq(R) = (1� SMR )
R

SM �R
;

analogous to (27). By taking exactly the same steps as in Appendix 1 (23)

follows.

Appendix 8

Let e" be a stochastic variable with �nite support, and de�ne the stochastic
matching term as " = ke". We will show that there exists an interval (k; k)
such that for any k in this interval the following holds: 1) R > RF , and 2)

the cut-o¤ level is equal to ":

For su¢ ciently small values of k we have that R < RF and �rst best

e¤ort and hiring is feasible with "c = ". De�ne k as the value of k such

that R = RF . As workers have full incentives, w0(y) = 1. Since �rms have

positive pro�t it thus follows that y(") > w("), otherwise �rms would obtain

zero pro�ts. Thus, increasing the cut-o¤ level has a �rst-order e¤ect on

expected surplus. Reducing the incentive power of the contract slightly only
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gives a second-order e¤ect on expected surplus. Thus, for values of k on an

interval above k �rms reduce the incentive power of the contract below �rst

best and still hire all types.

Appendix 9: Proof of Lemma 5

Di¤erentiating (24) gives (recall that by the very de�nition of neutral

shifts we know that the functional form of SR(R) does not change)

�S�RRR�dR� + (1� S�R)dR
� =

�

1� �
(dS� � dR�)

or

dS� = [1� 1� �

�
S�RRR

� +
1� �

�
(1� S�R)]dR

�

Since the coe¢ cient before dR� is strictly positive dR� and dS� have the

same sign. Rearranging (24) gives

J� � S� �R�

=
1� �

�
R�(1� S�R)

Di¤erentiating gives

dJ� =
1� �

�
(1� S�R � S�RRR

�)dR�

Since the coe¢ cient before dR� is strictly positive dJ� and dR� have the same

sign.
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Appendix 10: Proof that S� increases in y and A and decreases in

z and c.

i) Shifts in y.

Consider a positive shift in y. From lemma 3 we know that in equilibrium,

U� is maximized, hence it is trivial to show that U� is increasing in y.

Suppose that S� shifts down following an increase in y... From Lemma 5

it follows that R� and J� = S��R shifts down. The free entry condition then

implies that p falls. But then from (5) we have that U� falls, a contradiction.

ii) Shifts in z; A and c.

Consider again the equilibrium condition (24). Shifts in z, A and c only

in�uences the modi�ed Hosios condition through their e¤ects on the equilib-

rium value of U�. De�ne L(R;U�) as the left-hand side of (24), so that the

equilibrium condition can be written

L(R;U�) � (1� SMR (R))
R

SM(R;U�)�R

=
�

1� �

The function L is increasing in R for a given value of U�: As SM is decreasing

in U�, and SMRU = 0 it follows that L shifts up when U
� increases. Hence R�

is decreasing in U�, as is S�. From Lemma 3 we know that in equilibrium,

U� is maximized, hence it is trivial to show that U� is increasing in z and A

and decreasing in c. The claims thus follows.

Appendix 11:
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Here we show that an increase in k increases SMR (i.e., increases �) if

b � 1=2 is above 1=2. In the proof of proposition (2) part b, see appendix

5, we showed that � is decreasing in R. It is thus su¢ cient to show that

for a given �, an increase in 
 implies that the rent-constraint de�ned in

equation (18) is no longer satis�ed as the associated R increases. Taking

the expectation of equation (17) and using that eR("c) = 0 it follows that

expected rent can be expressed

(r + s)R =

Z k

�k

Z "

�k

 0(e("))



d"dH(")

=

Z k

�k

Z "

�k
b(e("))d"dH(") (29)

Using integration by parts gives

(r + s)R = �jk�k(1�H)

Z "

�k
b(")d�+

Z k

�k
b(")(1�H)d"

=

Z k

�k
b(")(1�H)d": (30)

Now " = �k, H(") = eH("=k), h(") = eh("=k)=k: Hence (30) can be written as
(r + s)R =

Z 1

�1
kb(k�)(1� eH(�))d� (31)

From equation (21) we have that

b(k�) = 1� �k
1� eH(�)eh(�)  00(e(k�))


2
: (32)

Now that b(k�) is decreasing in k. Suppose not. Then e(k�) increases, and

hence also  00(e(k�)), in which case the right-hand side of (32) decreases, and

we have derived a contradiction.

44



Inserted into (31) the expression for R can be rewritten as

(r + s)R =

Z 1

�1
k[1� �k

1� eH(�)eh(�)  00(e(k�))


2
](1� eH(�))d�:

Taking the derivative with respect to k gives

d(r + s)R

dk

=

Z 1

�1
[1� 2�k1�

eH(�)eh(�)  00(e(k�))


2
� k2�

1� eH(�)eh(�)  000(e(k�))


2
de(k�)

dk
](1� eH(�))d�

>

Z 1

�1
[1� 2�k1�

eH(�)eh(�)  00(e(k�))


2
](1� eH(�))d�

=

Z 1

�1
[2b(k�)� 1](1� eH(�))d�:

To get the result we have used that de(k�)
dk

< 0 (since b(k�) is decreasing in k)

and that  000 is positive and inserted from equation (32). Hence, a su¢ cient

condition ensuring that an increase in k increases R for a given � is b � 1=2.

Appendix 12: Proof of Proposition 5.

First we show that dey(k)
dk

= 0. Write ey(k) as
ey(k) = Z 1

�1
[y + k�+ 
e�(k�; k)�  (e�(k�; k))]d eH(�);

where e�(k�; k) denotes the e¤ort level prescribed by the optimal contract as

a function of � and k. At k = k, e� maximizes ey(k), and due to the envelope
theorem it follows that we can ignore the e¤ects of a change in k on e�. Thus,

dey(k)
dk

=

Z 1

�1
�d eH(�) = 0:
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The next step is to show that the equilibrium responses of U and S to a

change in k at k = k is zero. Taking the derivative of (8) for a given U�,

using that J � V = S �R and using the envelope theorem gives

r
dV

dk
= q(R�)

@SM(R; �; k)

@k
= 0;

since (r+s)SM(R; �; k) = ey(k)�(r+s)U and dey(k)
dk

= 0. Hence V max(U) does

not change, and from the equilibrium equation (9) we have that U�0(k) = 0.

Finally, we can write S�(k) = SM(R�; U�; k), and since SMR = 0 at R = R it

follows that S�0(k) = 0.

Then we turn to R�, which we write as R� = R�(k): At k = k, the

derivative of R�(k) may not exist. De�ne R�0(k) = lim
k!k

+ R�0(k). We want

to show that R�0(k) > 0. Since S� is constant we know from equation (24)

that R�(k) is increasing in k at k = k if and only if SMRk > 0, at this point,

i.e., if d�(k)
dk

� lim
k!k

+ �(k) > 0. Taking the expectation of equation (17) it

follows that expected rent can be written as (since eR(") = 0).
(r + s)R =

Z k

�k

Z "

�k
 0(e("))=
d"dH(")

=

Z k

�k

Z "

�k
b(e("))d"dH(") (33)

(since 
b =  0). Suppose now, contrafactually, that b(") = b̂ for all ", where

b̂ is a constant in (0; 1]. Then

R =

Z k

�k

Z "

�k
b̂d"dH(")

= b̂k:
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At k = k, we know that b = 1 for all ", and thus that R� = R = k.

Taking the derivative with respect to k, still assuming b̂ constant over types

gives

b̂0(k)jk=k = �
1

k
< 0:

For k < k we know that b is not constant in ". However, it follows that
db(")
dk
jk=k � b̂0(k)jk=k for some ". Furthermore, since b(") is increasing in "

for all k < k it follows that db(")
dk
jk=k is largest at " = ", hence db(")

dk
jk=k < 0.

From equation (21) we know that d�
dk
jk=k > 0. It follows that R�0(k) > 0 and

hence also that lim
k!k

+
du
dk
> 0. The result thus follows.

Appendix 13: Proof of Lemma 6

Consider the �rst order conditions for the optimal contract de�ned in

Proposition 1. We want to show that an increase in 
 increases the Lagrange

parameter �. This is equivalent to showing that for a given �, an increase

in 
 implies that the rent-constraint de�ned in equation (18) is no longer

satis�ed, as R has increased. From equation (33) it then follows that it is

su¢ cient to show that a positive shift in 
 increases b(") for all " for a given

value of �.

The �rst order condition for e¤ort (19) reads


[1�  0(e("))=
 � �
1�H(")

h(")
 00(e("))=
2] = 0:

It is su¢ cient to show that an increase in 
, keeping b(") =  0(e("))=


constant, increases the LHS of this equation. The second order conditions

then ensure that  0(e("))=
 increases. Substituting in b(") =  0(e("))=
 gives
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[1� b(")� �
1�H(")

h(")

 00(e("))b(")2

 0(e("))2
] = 0:

For a given b, e is increasing in 
, and it follows that the left-hand side is

increasing in e provided that  00(e("))
 0(e("))2 is decreasing.

Appendix 14: Proof of Proposition 6

Consider proposition (6). It is convenient to repeat the cut-o¤ equation

(20)

�[y+ "c+ 
e("c)� (e("c))� (r+ s)U�] +�
(1�H("c))

h("c)

 0(e("c))



= 0: (34)

Denote the left-hand side by XL("c), with all the variables (less "c) taking

their equilibrium values. Note that XL("c) denotes the marginal gain from

increasing "c. As the second order condition must be satis�ed locally, we

know that @XL=@" < 0 around " = "c:

Consider �rst a shift in y. We want to show that "c decreases in y.

Suppose �rst that � is constant, independent of y. Then e¤ort is independent

of y as well. Hence, the derivative of (34) reads

@XL("c)

@y
= �1 + (r + s)

dU�

dy
:

From Appendix 10 it follows that (r+ s)dU
�

dy
< 1. It thus have that XL shifts

down and hence that "c is decreasing in y.

Suppose then that d�
dy
< 0. From Property P1 in Appendix 5 we know

that "c de�ned by (34) is increasing in � (even when the e¤ects of an increase

in � on e is taken into account). Thus "c falls even more than when � is

constant.
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Suppose then �nally that d�
dy
> 0 (this we cannot rule out). We want to

show that "c is still decreasing in y. Suppose not. From equation (21) we

have that b(") and thus e¤ort is decreasing in � for all worker types. Using

equation (17) the expected rents can be written as

(r + s)R =

Z "

"c

Z "

"c

 0(e("))



d"dH (35)

Thus R� must fall if both � and "c increases.

Consider then the modi�ed Hosios-condition, which we can write as

(1� �)
R�

S� �R�
=

�

1� �

Suppose �rst that S� increases in y (as it does for a constant cut-o¤). Then

if � increases R� must increase in y as well. But then we have derived a

contradiction. Suppose then that S� decreases in y ( "c increases su¢ ciently

much). Since � by assumption increases, the �rms�share of S� falls, hence

J� falls. But then p� falls as well, and then surely also (r+ s)U� = z+ pR�...

However, as U� is maximized in equilibrium this is a contradiction.

To show the results for z and c we proceed in exactly the same way, and

it is therefore su¢ cient to study the e¤ects of changes keeping � constant.

Taking the derivative of XL with respect to z then gives

@XL("c)

@z
= (r + s)

dU�

dz
> 0:

Hence, "c is increasing in z. The argument if d�
dz
6= 0 proceeds in exactly the

same way as for changes in y.

Consider changes in c. Taking the derivative with respect to c for a given

� gives
@XL("c)

@c
= (r + s)

dU�

dc
< 0:
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Hence "c is decreasing in c. The argument if d�
dc
6= 0 proceeds in exactly the

same way as for changes in y.

Finally, taking derivative with respect to A for a given � gives

@XL("c)

@A
= (r + s)

dU�

dA
> 0:

Hence "c is increases in A. The argument if d�
dA
6= 0 proceeds in exactly the

same way as for changes in y.

Appendix 15: Proof of Lemma 7

a) Note that H(") = eH("=k) = eH(�) and that h(") = eh(�)=k. Inserting
this into (34) gives

�[y+k�c+
e(k�c)� (e(k�c))�(r+s)U�]+�k
(1� eH(�c))eh(�c)  0(e(k�c))



= 0:

(36)

We proceed in the same way as in Appendix 14. We �rst want to show

that the LHS of (36) increases in k for a given �: Denote the �rst term by

FT .

@FT

@k
= �

�
�c + (
 �  0(e))

@e(k�c)

@k

�
From Appendix 12 we know that b(k�c) decreases in k and hence that e(k�c)

decreases in k. Since 
 � 0(e) > 0; the �rst term is increasing in k provided

that �c � 0.

Denote the second term in the equation by ST .

50



ST = �k
(1� eH(�c))eh(�c)  0(e(k�c))




= �k
(1� eH(�c))eh(�c) b(k�c)

= �k
(1� eH(�c))eh(�c) [1� �k

(1� eH(�c))eh(�c)  00(e(k�c))


2
]

= a1k[1� a2k].

where a1 = � (1�
eH(�c))eh(�c) and a2 =

(1� eH(�c))eh(�c)  00(e(k�c))

2

. Now

@ST

@k
= a1[1� 2ka2]� a1k

2@a2
dk

:

Since e(k�) is decreasing in k we know that  00(e(k�c)) is decreasing in k,

and hence that @a2
dk

< 0. A su¢ cient condition for ST being increasing in k

is thus that 1� 2a2k > 0, or a2k < 1=2. Since b(k�c) = 1� a2k this holds if

and only if b(k�c) > 1=2, which is true by assumption.

Suppose then that the equilibrium value of � increases. Then we know

from Property P1 in Appendix 5 that this will increase "c even further.

Suppose then that � decreases. We want to show that this is incompatible

with a decrease in "c. To this end suppose both "c and � decreases. From

equation (21) it follows that b(") and thus e¤ort is decreasing in � for all

worker types. Using equation (17) the expected rents can be written as

(r + s)R =

Z "

"c

Z "

"c

 0(e("))



d"dH: (37)

It follows that R increases. Consider then the modi�ed Hosios-condition,

which we can write as

(1� �)
R�

S� �R�
=

�

1� �
:
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An increase in R and a decrease in � is only consistent with the modi�ed

Hosios condition if S� increases, in which case U� surely increases (both R�

and the job �nding rate increases). However, we already know that U�(k)

is strictly decreasing in k whenever "c = ". Since the equilibrium value U�

maximizes U it follows from the envelope theorem that U is decreasing in k

whenever "c is su¢ ciently close to ", and we have derived a contradiction.

Result b) We use the same method as above. Consider equation (34).

For a given � we know from Appendix 12 and Lemma 6 that an increase in


 leads to an increase in b(") for a given �, hence the second term of (34)

and thus also "c increases. If � increase we know from Property P1 that this

increases "c even further. Hence we have only left to show that "c increases

even if � falls.

Suppose therefore that � and "c fall. Then b(") surely increases, From

equation (37) it follows that R� increases.

Consider then the modi�ed Hosios-condition:

(1� �)
R�

S� �R�
=

�

1� �
:

If � falls and R� increases, then surely J and the job �nding rate increases

as well. Hence the equilibrium value of U increases. However, by assumption

U� is constant, and we have derived a contradiction.
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