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Discrete-time hazard model of savings bank exit

To record event occurrence, we divide the time from branching deregulation into equal-sized

intervals of length one year, with interval j defined as ( j − 1, j ]. Interval j = 1 is thus the

first year following the date of branching deregulation, 1 January 1984.1

Let T denote the time (years) elapsed from branching deregulation to the observed exit

of savings bank i, i.e. we have observations on n independent and identically distributed

random variables, where n is the number of banks observed at the beginning of interval 1.

The failure function, P (j) = prob(T ≤ j), is the cumulative distribution function of T with

probability mass function p(j). It defines, in turn, the survival function S(j) = 1−P (j) =

prob(T > j) which is the probability that the duration of the lifetime of a randomly chosen

bank exceeds j periods. Since each bank does not survive for the same number of periods

after deregulation, we denote the last period of the lifetime of bank i, ji.

The modeling of the economic relationship between the probability of survival and the

explanatory variables focuses on the “hazard rate” rather than the survival function. The

hazard rate is defined as the probability of the event of exit during interval j, conditional

on survival up to that point in time. Below, we outline our estimation approach which

follows Allison (1982) and Jenkins (2005).2

Let the hazard rate for bank i in year j be defined as

hij = prob(Ti = j|Ti ≥ j, xij) , (1)

where xij is a (k×1) vector of bank-specific (constant or time-varying) explanatory variables.

We explain how we construct the explanatory variables, xi, in detail below but the general

point is that xi measures the characteristics of bank i and the markets in which it operates,

among others, the level of social capital.

1Although it is possible to uncover the exact day of a bank’s exit, we prefer to model the process in
discrete rather than continuous time to match the frequency of the explanatory variables, most of which are
available only annually.

2Jenkins (2005) is a valuable exposition of duration analysis and its implementation. For discrete-time
methods, see also Singer and Willett (1993).
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We specify a proportional odds logistic model for the hazard rate:

log

[
hij

1− hij

]
= log

[
h0j

1− h0j

]
+ β′xij (2)

⇔ hij =
1

1 + e−[θ0j+β
′xij ]

. (3)

In (2), the log-odds of the hazard rate for each bank depends linearly on xij and a “base-

line” hazard of risk over time, logit(h0j) = θ0j . Since the hazard rate is a (conditional)

probability, it lies between zero and one, while the log of the odds ratio accordingly lies

between minus and plus infinity. The baseline hazard is common to all banks and a function

of observation time only. It is the underlying process driving the event of exit when the

individual bank characteristics equal zero. In our setting, the baseline hazard captures the

underlying process of consolidation in the Norwegian banking sector following deregulation.

We specify a functional form for θ0j ,

θ0j = α0 + α1 log(j) + α2[ log(j)]2 . (4)

Ignoring first the quadratic term in (4), the sign of α1 controls the pattern of duration

dependence for the population of savings banks. When α1 is negative the hazard rate is

monotonically decreasing over time for all banks, and vice versa for positive α1. When α1

is zero, the baseline probability of exit is constant for all observation intervals. We include

a quadratic term to capture the fact that the hazard rate cannot continuously decrease or

increase forever, given that the population of banks at the beginning of the sample is fixed.

In practice, the form in (4) was chosen based on a preliminary non-parametric estimation of

the baseline hazard, with the aim of capturing the “shape” of the process of consolidation in

a parsimonious manner, preserving degrees of freedom. As a robustness check, we estimate

our main survival regression using time dummy variables in place of (4).

Our sample is right-censored as we do not observe the life duration of banks that survive

from the time of deregulation until the end of our sample. We only know that these banks

did not exit prior to 2005, the end of our sample period, as, by nature, banks can only exit
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once.3

Define an indicator variable, δi equal to one if bank i exits during the sample and zero

otherwise (censoring). The general form of the likelihood function corresponding to the

observations of Ti is

L =
∏

i,uncensored

p(ji)
∏

i,censored

[1− P (ji)]

=
n∏
i=1

p(ji)
δi [1− P (ji)]

(1−δi) (5)

There is a one-to-one relationship between the survival function and the hazard rate

and (5) can therefore be rewritten in terms of the latter, S(j) = Πj
k=1(1 − hk). In our

setting, the probability functions must be further modified for left-truncation—the relevant

starting date for our “experiment” is the year of deregulation, 1984, but we observe the

population of banks only three years later, from 1987.

Let jτ denote the point of truncation (the year of 1987, common to all banks). The

truncated conditional probability functions can be written in terms of the hazard rate as

p(ji|ji > jτ ) =
hiji

∏ji−1

k=1(1− hik)∏jτ
k=1(1− hik)

= hiji

ji−1∏
k=jτ

(1− hik) (6)

for censored observations and

1− P (ji|ji > jτ ) =

∏ji
k=1(1− hik)∏jτ
k=1(1− hik)

=
ji∏

k=jτ

(1− hik) (7)

for uncensored observations respectively. The corresponding unconditional expressions are

respectively

prob(Ti > ji) = S(ji) = (1− hi1)(1− hi2)...(1− hiji) =
ji∏
k=1

(1− hik) (8)

3Censoring is indeed one reason why an OLS regression of life duration on bank and municipality-
characteristics would be an inappropriate estimation approach for the issue at hand. The alternative ap-
proach of defining a binary dependent variable that equals one if a bank exits during the sample period
ignores important information regarding the timing of exit, see Allison (1982) for a discussion of such issues.
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and

prob(Ti = ji) = hijiS(ji − 1) = hiji

ji−1∏
k=1

(1− hik) . (9)

Substituting into the likelihood function we obtain

L =
n∏
i=1

[
hiji

ji−1∏
k=jτ

(1− hik)
]δi[ ji∏

k=jτ

(1− hik)
]1−δi

. (10)

Brown (1975) and Allison (1982) demonstrate that (10) can be reformulated as the

likelihood function for a binary dependent variable, yij , where

yij =

 1, if bank i exits during interval j

0, if bank i does not exit during interval j
. (11)

Hence, if the event of exit occurs for bank i during, say, the fifth year of observation,

yij equals zero in years one to four, and one in year five. For banks that are not observed

to exit during our sample, yij equals zero in all periods. Essentially, this formulation

converts the problem into a panel with a binary bank-specific dependent variable where the

time dimension refers to the number of observation periods for each bank. The panel is

unbalanced because not all banks survive for the same number of years. The reformulated

likelihood function becomes

L =
n∏
i=1

[ ji∏
k=jτ

hyikik (1− hik)(1−yik)
]
. (12)

The likelihood in (12) has the standard form for a logistic binary dependent variable, yik,

with probabilities hik and (1− hik) respectively (given that hik is logistic by assumption).

Hence, (2) may be estimated as a logit regression with yit as the dependent variable and

α0, log(j), ( log(j))2, and xij as explanatory variables. The total number of observations

equals
∑n
i=1 (ji − jτ ) and bank i is observed for ji periods.
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