BI

Solutions:

Examination date:
Permitted examination
support material:
Answer sheets:

Mock exam

GRA 60353 Mathematics

Dec 2013 3h Total no. of pages: 4
A bilingual dictionary and BI-approved calculator TEXAS
INSTRUMENTS BA II Plus
Squares
Counts 80% of GRA 6035 The subquestions have equal weight Responsible department: Economics

Question 1.

(a) The partial derivatives of $f(x, y, z, w)=x^{2}-y^{2}+y^{3}+y z+z^{2}+w^{2}$ are given by

$$
f_{x}^{\prime}=2 x, \quad f_{y}^{\prime}=-2 y+3 y^{2}+z, \quad f_{z}^{\prime}=y+2 z, \quad f_{w}^{\prime}=2 w
$$

and its Hessian matrix is given by

$$
H(f)(x, y, z, w)=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 6 y-2 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

(b) The stationary points of f are given by

$$
f_{x}^{\prime}=2 x=0, \quad f_{y}^{\prime}=-2 y+3 y^{2}+z=0, \quad f_{z}^{\prime}=y+2 z=0, \quad f_{w}^{\prime}=2 w=0
$$

This gives $x=w=0, y=-2 z$ and $-2 y+3 y^{2}+z=4 z+12 z^{2}+z=0$. The last equation is $5 z+12 z^{2}=z(5+12 z)=0$, with solutions $z=0$ and $z=-5 / 12$. This gives two stationary points $(x, y, z, w)=(0,0,0,0)$ and $(x, y, z, w)=(0,10 / 12,-5 / 12,0)$. The Hessian matrix at $(0,0,0,0)$ has $D_{1}=2$ and $D_{2}=-4$, so this matrix is indefinite. The Hessian matrix at $(0,10 / 12,-5 / 12,0)$ has $D_{1}=2, D_{2}=2 \cdot 3=6, D_{3}=2 \cdot(2(6 y-2)-1)=2 \cdot 5=10$, and $D_{4}=2 D_{3}=20$, so this matrix is positive definite. It follows that $(0,0,0,0)$ is a saddle point and that $(0,10 / 12,-5 / 12,0)$ is a local minimum point.
(c) If the function f was convex or concave, the Hessian matrix $H(f)(x, y, z, w)$ would be either positive semidefinite at all points (x, y, z, w), or negative semidefinite at all points (x, y, z, w). This is not the case, since the Hessian is indefinite at $(0,0,0,0)$. It follows that f is not convex and not concave.

Question 2.

(a) We compute the determinant of A by cofactor expansion along the first column:

$$
\operatorname{det}(A)=\left|\begin{array}{cccc}
a & 1 & 0 & 0 \\
1 & a & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right|=a\left(a \cdot\left|\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right|\right)-1\left(1 \cdot\left|\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right|\right)=\left(a^{2}-1\right) \cdot\left|\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right|=0
$$

We therefore have $\operatorname{rk}(A) \leq 3$ for all a. To find the rank of A, we use row operations to obtain an echelon form (and start by interchanging the first two rows):

$$
\left(\begin{array}{cccc}
a & 1 & 0 & 0 \\
1 & a & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right) \Rightarrow\left(\begin{array}{cccc}
1 & a & 0 & 0 \\
0 & 1-a^{2} & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Since there are two pivot positions when $a^{2}=1$ and three otherwise, we have that

$$
\operatorname{rk}(A)= \begin{cases}3, & a \neq \pm 1 \\ 2, & a= \pm 1\end{cases}
$$

(b) The symmetric matrix A has leading principal minors D_{i} given by

$$
D_{1}=a, \quad D_{2}=a^{2}-1, \quad D_{3}=a^{2}-1, \quad D_{4}=|A|=0
$$

Since $D_{4}=0$, it is necessary to compute all principal minor to find out when A is positive semidefinite, and we find the following principal minors:

$$
\begin{aligned}
\Delta_{1} & =a, a, 1,1 \\
\Delta_{2} & =a^{2}-1, a, a, a, a, 0 \\
\Delta_{3} & =a^{2}-1, a^{2}-1,0,0 \\
\Delta_{4} & =0
\end{aligned}
$$

All principal minors $\Delta_{i} \geq 0$ when $a \geq 0$ and $a^{2}-1 \geq 0$, so A is positive semidefinite for $a \geq 1$ (and indefinite when $a<1$).
(c) The characteristic polynomial of A (the left side of the characteristic equation) is given by

$$
\left|\begin{array}{cccc}
a-\lambda & 1 & 0 & 0 \\
1 & a-\lambda & 0 & 0 \\
0 & 0 & 1-\lambda & -1 \\
0 & 0 & -1 & 1-\lambda
\end{array}\right|=(a-\lambda)\left((a-\lambda) \cdot\left|\begin{array}{cc}
1-\lambda & -1 \\
-1 & 1-\lambda
\end{array}\right|\right)-1\left(1 \cdot\left|\begin{array}{cc}
1-\lambda & -1 \\
-1 & 1-\lambda
\end{array}\right|\right)
$$

Hence the characteristic equation is given by

$$
\left((a-\lambda)^{2}-1\right)\left|\begin{array}{cc}
1-\lambda & -1 \\
-1 & 1-\lambda
\end{array}\right|=\left((a-\lambda)^{2}-1\right)\left(\lambda^{2}-2 \lambda\right)=0
$$

which can be expressed as $(a-\lambda)^{2}-1=0$ or $\lambda^{2}-2 \lambda=0$. The eigenvalues are therefore $\lambda=a+1, \lambda=a-1, \lambda=0$ and $\lambda=2$.

Question 3.

(a) The differential equation $y^{\prime \prime}-7 y^{\prime}+10 y=4 e^{t}-5$ is second order linear, and it has solution $y=y_{h}+y_{p}$. The homogeneous equation $y^{\prime \prime}-7 y^{\prime}+10 y=0$ has characteristic equation $r^{2}-7 r+10=0$, and distinct roots $r=2$ and $r=5$. Therefore $y_{h}=C_{1} e^{2 t}+C_{2} e^{5 t}$. To find a particular solution y_{p}, we consider the right hand side $f(t)=4 e^{t}-5$ and its derivatives $f^{\prime}=4 e^{t}$ and $f^{\prime \prime}=4 e^{t}$. We guess that there is a solution of the form $y=A e^{t}+B$. Inserting this guess in the differential equation, we obtain

$$
A e^{t}-7\left(A e^{t}\right)+10\left(A e^{t}+B\right)=4 e^{t}-5
$$

or $4 A e^{t}+10 B=4 e^{t}-5$. We see that $A=1$ and $B=-1 / 2$ is a solution, so $y_{p}=e^{t}-1 / 2$ and the general solution is

$$
y=y_{h}+y_{p}=C_{1} e^{2 t}+C_{2} e^{5 t}+e^{t}-1 / 2
$$

(b) The differential equation $t y^{\prime}+(2-t) y=e^{2 t}$ is first order linear since it can be written in standard form as

$$
y^{\prime}+\frac{2-t}{t} y=t^{-1} e^{2 t}
$$

It can be solved using integrating factor, and

$$
\int \frac{2-t}{t} d t=\int(2 / t-1) d t=2 \ln t-t+\mathcal{C}
$$

so the integrating factor is $u=e^{2 \ln t-t}=t^{2} e^{-t}$. After multiplying with the integrating factor, we get

$$
(y u)^{\prime}=t^{-1} e^{2 t} u=t e^{t} \quad \Rightarrow \quad y=\frac{1}{u} \int t e^{t} d t=\frac{t e^{t}-e^{t}+\mathcal{C}}{t^{2} e^{-t}}=\frac{t-1}{t^{2}} e^{2 t}+\frac{\mathcal{C}}{t^{2}} e^{t}
$$

(c) The differential equation $3 y^{2} t e^{-t} y^{\prime}+\left(y^{3}-1\right) e^{-t}=t e^{-t} y^{3}$ can be written as $p y^{\prime}+q=0$ with

$$
p=3 y^{2} t e^{-t}, \quad q=\left(y^{3}-1\right) e^{-t}-t e^{-t} y^{3}
$$

We try to find a function $h=h(y, t)$ such that $h_{y}^{\prime}=p$ and $h_{t}^{\prime}=q$. From the first condition, we get

$$
h=y^{3} t e^{-t}+\phi(t)
$$

and using this expression for h, the second condition becomes $h_{t}^{\prime}=q$, where

$$
\begin{aligned}
h_{t}^{\prime}=y^{3}\left(1 \cdot e^{-t}+t e^{-t}(-1)\right)+\phi^{\prime}(t) & =y^{3} e^{-t}-y^{3} t e^{-t}+\phi^{\prime}(t) \\
q=\left(y^{3}-1\right) e^{-t}-t e^{-t} y^{3} & =y^{3} e^{-t}-e^{-t}-y^{3} t e^{-t}
\end{aligned}
$$

Hence $h_{t}^{\prime}=q$ holds if $\phi^{\prime}(t)=-e^{-t}$. We may therefore choose $\phi(t)=e^{-t}$, and we find a function $h=y^{3} t e^{-t}+e^{-t}$ that satisfies $h_{y}^{\prime}=p$ and $h_{t}^{\prime}=q$. This means that the differential equation is exact, with solution

$$
h=y^{3} t e^{-t}+e^{-t}=\mathcal{C} \quad \Rightarrow \quad y=\sqrt[3]{\frac{\mathcal{C} e^{t}-1}{t}}
$$

Question 4.

(a) We write the Kuhn-Tucker problem in standard form as

$$
\max -f(x, y, z, w)=-x^{2}-y^{2}-z^{2}-w^{2} \text { subject to }\left\{\begin{array}{l}
x y+1 \leq 0 \\
2 z w+8 \leq 0
\end{array}\right.
$$

and we form the Lagrangian

$$
\mathcal{L}=-x^{2}-y^{2}-z^{2}-w^{2}-\lambda_{1}(x y+1)-\lambda_{2}(2 z w+8)
$$

The first order conditions (FOC) are

$$
\begin{aligned}
\mathcal{L}_{x}^{\prime} & =-2 x-\lambda_{1} y=0 \\
\mathcal{L}_{y}^{\prime} & =-2 y-\lambda_{1} x=0 \\
\mathcal{L}_{z}^{\prime} & =-2 z-\lambda_{2} \cdot 2 w=0 \\
\mathcal{L}_{w}^{\prime} & =-2 w-\lambda_{2} \cdot 2 z=0
\end{aligned}
$$

the constraints (C) are given by $x y+1 \leq 0$ and $2 z w+8 \leq 0$, and the complementary slackness conditions (CSC) are given by

$$
\begin{array}{ll}
\lambda_{1} \geq 0 & \text { and } \lambda_{1}(x y+1)=0 \\
\lambda_{2} \geq 0 & \text { and } \lambda_{2}(2 z w+8)=0
\end{array}
$$

When $(x, y, z, w)=(1,-1,2,-2)$, the FOC's give $-2+\lambda_{1}=0$ and $-4+4 \lambda_{2}=0$, or $\lambda_{1}=2$ and $\lambda_{2}=1$. Since $x y=-1$ and $z w=-4$, the C's are satisfied and binding, and the CSC's are satisfied. So $\left(x, y, z, w ; \lambda_{1}, \lambda_{2}\right)=(1,-1,2,-2 ; 2,1)$ is a solution of the K-T conditions.
(b) We prove that $(x, y, z, w)=(1,-1,2,-2)$ is max for $-f$ (and a min for f) using the SOC: If $h(x, y, z, w)=\mathcal{L}(x, y, z, w ; 2,1)=-x^{2}-y^{2}-z^{2}-w^{2}-2(x y+1)-(2 z w+8)$ is a concave funtion in (x, y, z, w), then $(x, y, z, w)=(1,-1,2,-2)$ is a maximum point for $-f$. The Hessian matrix of h is

$$
H(h)=\left(\begin{array}{cccc}
-2 & -2 & 0 & 0 \\
-2 & -2 & 0 & 0 \\
0 & 0 & -2 & -2 \\
0 & 0 & -2 & -2
\end{array}\right)
$$

This is a symmetric matrix with leading principal minors $D_{1}=-2, D_{2}=0, D_{3}=0$ and $D_{4}=0$. We compute the principal minors of order one and two:

$$
\begin{aligned}
& \Delta_{1}=-2,-2,-2,-2 \\
& \Delta_{2}=0,4,4,4,4,0
\end{aligned}
$$

The Hessian matrix is clearly of rank two, so all principal minors of order three and four are zero. This implies that h is a concave function, and therefore $(x, y, z, w)=(1,-1,2,-2)$ solves the KT problem. The minimum value of f is $f(1,-1,2,-2)=1+1+4+4=10$.
(c) Let us consider the KT problem

$$
\max -f(x, y, z, w)=-x^{2}-y^{2}-z^{2}-w^{2} \text { subject to }\left\{\begin{array}{l}
x y+1 \leq 0 \\
2 z w+c \leq 0
\end{array}\right.
$$

with Lagrangian $\mathcal{L}=-x^{2}-y^{2}-z^{2}-w^{2}-\lambda_{1}(x y+1)-\lambda_{2}(2 z w+c)$. When $c=8$, we have found the maximum value $-f=-(1+1+4+4)=-10$. When we change c to $c=7.9$, it follows from the Envelope theorem that the change in maximum value is estimated by

$$
\Delta c \cdot \mathcal{L}_{c}^{\prime}\left(x^{*}(c), y^{*}(c), z^{*}(c), w^{*}(c) ; \lambda_{1}^{*}(c), \lambda_{2}^{*}(c)\right)=-0.1 \cdot\left(-\lambda_{2}^{*}(8)\right)=0.1
$$

since $\lambda_{2}^{*}(8)=1$. The new maximal value for $-f$ is approximately $-10+0.1=-9.9$, and the new minimum value for f is approximately $f=9.9$.
(d) Consider the first order conditions (FOC) given by

$$
\begin{aligned}
\mathcal{L}_{x}^{\prime} & =-2 x-\lambda_{1} y=0 \\
\mathcal{L}_{y}^{\prime} & =-2 y-\lambda_{1} x=0 \\
\mathcal{L}_{z}^{\prime} & =-2 z-\lambda_{2} 2 w=0 \\
\mathcal{L}_{w}^{\prime} & =-2 w-\lambda_{2} 2 z=0
\end{aligned}
$$

If $\lambda_{1}=0$, then $x=y=0$, and this does not satisfy the first constraint. If $\lambda_{2}=0$, then $z=w=0$, and this does not satisfy the second constraint. Therefore $\lambda_{1}, \lambda_{2}>0$, and $x y=-1$ and $z w=-4$ by the CSC's. In particular, $x, y, z, w \neq 0$. The first two conditions give $y=-2 x / \lambda_{1}$ and $x=-2 y / \lambda_{1}$. When we combine these condtions, we get

$$
x=-2 y / \lambda_{1}=\left(2 / \lambda_{1}\right)^{2} x \quad \Rightarrow \quad \lambda_{1}=2
$$

since $x \neq 0$. This implies that $x=-y$ and since $x y=-1$, we must have $x^{2}=1$. We get two solutions $(x, y)=(1,-1)$ or $(x, y)=(-1,1)$ with $\lambda_{1}=2$. The last two FOC's give $w=-z / \lambda_{2}$ and $z=-w / \lambda_{2}$. When we combine these condtions, we get

$$
z=-w / \lambda_{2}=\left(1 / \lambda_{1}\right)^{2} z \quad \Rightarrow \quad \lambda_{2}=1
$$

since $z \neq 0$. This implies that $z=-w$ and since $z w=-4$, we must have $z^{2}=4$. We get two solutions $(z, w)=(2,-2)$ or $(x, y)=(-2,2)$ with $\lambda_{2}=1$. All four candidates satisfy $\mathrm{C}+$ CSC as well as FOC, so the points

$$
\begin{aligned}
& \left(x, y, z, w ; \lambda_{1}, \lambda_{2}\right)=(1,-1,2,-2 ; 2,1) \\
& \left(x, y, z, w ; \lambda_{1}, \lambda_{2}\right)=(-1,1,2,-2 ; 2,1) \\
& \left(x, y, z, w ; \lambda_{1}, \lambda_{2}\right)=(1,-1,-2,2 ; 2,1) \\
& \left(x, y, z, w ; \lambda_{1}, \lambda_{2}\right)=(-1,1,-2,2 ; 2,1)
\end{aligned}
$$

are the solutions of the KT conditions.

