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Question 1.

(a) The partial derivatives of f(x, y, z, w) = x2 − y2 + y3 + yz + z2 + w2 are given by

f ′x = 2x, f ′y = −2y + 3y2 + z, f ′z = y + 2z, f ′w = 2w

and its Hessian matrix is given by

H(f)(x, y, z, w) =


2 0 0 0

0 6y − 2 1 0

0 1 2 0

0 0 0 2


(b) The stationary points of f are given by

f ′x = 2x = 0, f ′y = −2y + 3y2 + z = 0, f ′z = y + 2z = 0, f ′w = 2w = 0

This gives x = w = 0, y = −2z and −2y + 3y2 + z = 4z + 12z2 + z = 0. The last equation is
5z + 12z2 = z(5 + 12z) = 0, with solutions z = 0 and z = −5/12. This gives two stationary
points (x, y, z, w) = (0, 0, 0, 0) and (x, y, z, w) = (0, 10/12,−5/12, 0). The Hessian matrix at
(0, 0, 0, 0) has D1 = 2 and D2 = −4, so this matrix is indefinite. The Hessian matrix at
(0, 10/12,−5/12, 0) has D1 = 2, D2 = 2 · 3 = 6, D3 = 2 · (2(6y − 2) − 1) = 2 · 5 = 10, and
D4 = 2D3 = 20, so this matrix is positive definite. It follows that (0, 0, 0, 0) is a saddle point
and that (0, 10/12,−5/12, 0) is a local minimum point.

(c) If the function f was convex or concave, the Hessian matrix H(f)(x, y, z, w) would be either
positive semidefinite at all points (x, y, z, w), or negative semidefinite at all points (x, y, z, w).
This is not the case, since the Hessian is indefinite at (0, 0, 0, 0). It follows that f is not convex
and not concave.

Question 2.

(a) We compute the determinant of A by cofactor expansion along the first column:

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣

a 1 0 0

1 a 0 0

0 0 1 −1

0 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣
= a

a ·
∣∣∣∣∣∣ 1 −1

−1 1

∣∣∣∣∣∣
− 1

1 ·

∣∣∣∣∣∣ 1 −1

−1 1

∣∣∣∣∣∣
 = (a2 − 1) ·

∣∣∣∣∣∣ 1 −1

−1 1

∣∣∣∣∣∣ = 0
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We therefore have rk(A) ≤ 3 for all a. To find the rank of A, we use row operations to obtain
an echelon form (and start by interchanging the first two rows):

a 1 0 0

1 a 0 0

0 0 1 −1

0 0 −1 1

 ⇒


1 a 0 0

0 1− a2 0 0

0 0 1 −1

0 0 0 0


Since there are two pivot positions when a2 = 1 and three otherwise, we have that

rk(A) =

{
3, a 6= ±1

2, a = ±1

(b) The symmetric matrix A has leading principal minors Di given by

D1 = a, D2 = a2 − 1, D3 = a2 − 1, D4 = |A| = 0

Since D4 = 0, it is necessary to compute all principal minor to find out when A is positive
semidefinite, and we find the following principal minors:

∆1 = a, a, 1, 1

∆2 = a2 − 1, a, a, a, a, 0

∆3 = a2 − 1, a2 − 1, 0, 0

∆4 = 0

All principal minors ∆i ≥ 0 when a ≥ 0 and a2− 1 ≥ 0, so A is positive semidefinite for a ≥ 1
(and indefinite when a < 1).

(c) The characteristic polynomial of A (the left side of the characteristic equation) is given by∣∣∣∣∣∣∣∣∣∣∣∣

a− λ 1 0 0

1 a− λ 0 0

0 0 1− λ −1

0 0 −1 1− λ

∣∣∣∣∣∣∣∣∣∣∣∣
= (a− λ)

(a− λ) ·

∣∣∣∣∣∣1− λ −1

−1 1− λ

∣∣∣∣∣∣
− 1

1 ·

∣∣∣∣∣∣1− λ −1

−1 1− λ

∣∣∣∣∣∣


Hence the characteristic equation is given by

(
(a− λ)2 − 1

) ∣∣∣∣∣∣1− λ −1

−1 1− λ

∣∣∣∣∣∣ =
(
(a− λ)2 − 1

)
(λ2 − 2λ) = 0

which can be expressed as (a − λ)2 − 1 = 0 or λ2 − 2λ = 0. The eigenvalues are therefore
λ = a+ 1, λ = a− 1, λ = 0 and λ = 2.

Question 3.

(a) The differential equation y′′ − 7y′ + 10y = 4et − 5 is second order linear, and it has solution
y = yh + yp. The homogeneous equation y′′ − 7y′ + 10y = 0 has characteristic equation
r2 − 7r + 10 = 0, and distinct roots r = 2 and r = 5. Therefore yh = C1e

2t + C2e
5t. To find

a particular solution yp, we consider the right hand side f(t) = 4et − 5 and its derivatives
f ′ = 4et and f ′′ = 4et. We guess that there is a solution of the form y = Aet + B. Inserting
this guess in the differential equation, we obtain

Aet − 7(Aet) + 10(Aet +B) = 4et − 5

or 4Aet + 10B = 4et− 5. We see that A = 1 and B = −1/2 is a solution, so yp = et− 1/2 and
the general solution is

y = yh + yp = C1e
2t + C2e

5t + et − 1/2
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(b) The differential equation ty′ + (2 − t)y = e2t is first order linear since it can be written in
standard form as

y′ +
2− t
t

y = t−1e2t

It can be solved using integrating factor, and∫
2− t
t

dt =

∫
(2/t− 1) dt = 2 ln t− t+ C

so the integrating factor is u = e2 ln t−t = t2e−t. After multiplying with the integrating factor,
we get

(yu)′ = t−1e2tu = tet ⇒ y =
1

u

∫
tet dt =

tet − et + C
t2e−t

=
t− 1

t2
e2t +

C
t2
et

(c) The differential equation 3y2te−ty′ + (y3 − 1)e−t = te−ty3 can be written as py′ + q = 0 with

p = 3y2te−t, q = (y3 − 1)e−t − te−ty3

We try to find a function h = h(y, t) such that h′y = p and h′t = q. From the first condition,
we get

h = y3te−t + φ(t)

and using this expression for h, the second condition becomes h′t = q, where

h′t = y3(1 · e−t + te−t(−1)) + φ′(t) = y3e−t − y3te−t + φ′(t)

q = (y3 − 1)e−t − te−ty3 = y3e−t − e−t − y3te−t

Hence h′t = q holds if φ′(t) = −e−t. We may therefore choose φ(t) = e−t, and we find a
function h = y3te−t + e−t that satisfies h′y = p and h′t = q. This means that the differential
equation is exact, with solution

h = y3te−t + e−t = C ⇒ y =
3

√
Cet − 1

t

Question 4.

(a) We write the Kuhn-Tucker problem in standard form as

max −f(x, y, z, w) = −x2 − y2 − z2 − w2 subject to

{
xy + 1 ≤ 0

2zw + 8 ≤ 0

and we form the Lagrangian

L = −x2 − y2 − z2 − w2 − λ1(xy + 1)− λ2(2zw + 8)

The first order conditions (FOC) are

L′x = −2x− λ1y = 0

L′y = −2y − λ1x = 0

L′z = −2z − λ2 · 2w = 0

L′w = −2w − λ2 · 2z = 0

the constraints (C) are given by xy+1 ≤ 0 and 2zw+8 ≤ 0, and the complementary slackness
conditions (CSC) are given by

λ1 ≥ 0 and λ1(xy + 1) = 0

λ2 ≥ 0 and λ2(2zw + 8) = 0

When (x, y, z, w) = (1,−1, 2,−2), the FOC’s give −2 + λ1 = 0 and −4 + 4λ2 = 0, or λ1 = 2
and λ2 = 1. Since xy = −1 and zw = −4, the C’s are satisfied and binding, and the CSC’s
are satisfied. So (x, y, z, w;λ1, λ2) = (1,−1, 2,−2; 2, 1) is a solution of the K-T conditions.
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(b) We prove that (x, y, z, w) = (1,−1, 2,−2) is max for −f (and a min for f) using the SOC: If
h(x, y, z, w) = L(x, y, z, w; 2, 1) = −x2−y2−z2−w2−2(xy+1)−(2zw+8) is a concave funtion
in (x, y, z, w), then (x, y, z, w) = (1,−1, 2,−2) is a maximum point for −f . The Hessian matrix
of h is

H(h) =


−2 −2 0 0

−2 −2 0 0

0 0 −2 −2

0 0 −2 −2


This is a symmetric matrix with leading principal minors D1 = −2, D2 = 0, D3 = 0 and
D4 = 0. We compute the principal minors of order one and two:

∆1 = −2,−2,−2,−2

∆2 = 0, 4, 4, 4, 4, 0

The Hessian matrix is clearly of rank two, so all principal minors of order three and four are
zero. This implies that h is a concave function, and therefore (x, y, z, w) = (1,−1, 2,−2) solves
the KT problem. The minimum value of f is f(1,−1, 2,−2) = 1 + 1 + 4 + 4 = 10.

(c) Let us consider the KT problem

max −f(x, y, z, w) = −x2 − y2 − z2 − w2 subject to

{
xy + 1 ≤ 0

2zw + c ≤ 0

with Lagrangian L = −x2 − y2 − z2 − w2 − λ1(xy + 1)− λ2(2zw + c). When c = 8, we have
found the maximum value −f = −(1 + 1 + 4 + 4) = −10. When we change c to c = 7.9, it
follows from the Envelope theorem that the change in maximum value is estimated by

∆c · L′c(x∗(c), y∗(c), z∗(c), w∗(c);λ∗1(c), λ∗2(c)) = −0.1 · (−λ∗2(8)) = 0.1

since λ∗2(8) = 1. The new maximal value for −f is approximately −10 + 0.1 = −9.9, and the
new minimum value for f is approximately f = 9.9.

(d) Consider the first order conditions (FOC) given by

L′x = −2x− λ1y = 0

L′y = −2y − λ1x = 0

L′z = −2z − λ22w = 0

L′w = −2w − λ22z = 0

If λ1 = 0, then x = y = 0, and this does not satisfy the first constraint. If λ2 = 0, then
z = w = 0, and this does not satisfy the second constraint. Therefore λ1, λ2 > 0, and xy = −1
and zw = −4 by the CSC’s. In particular, x, y, z, w 6= 0. The first two conditions give
y = −2x/λ1 and x = −2y/λ1. When we combine these condtions, we get

x = −2y/λ1 = (2/λ1)
2x ⇒ λ1 = 2

since x 6= 0. This implies that x = −y and since xy = −1, we must have x2 = 1. We get two
solutions (x, y) = (1,−1) or (x, y) = (−1, 1) with λ1 = 2. The last two FOC’s give w = −z/λ2
and z = −w/λ2. When we combine these condtions, we get

z = −w/λ2 = (1/λ1)
2z ⇒ λ2 = 1

since z 6= 0. This implies that z = −w and since zw = −4, we must have z2 = 4. We get
two solutions (z, w) = (2,−2) or (x, y) = (−2, 2) with λ2 = 1. All four candidates satisfy C +
CSC as well as FOC, so the points

(x, y, z, w;λ1, λ2) = (1,−1, 2,−2; 2, 1)

(x, y, z, w;λ1, λ2) = (−1, 1, 2,−2; 2, 1)

(x, y, z, w;λ1, λ2) = (1,−1,−2, 2; 2, 1)

(x, y, z, w;λ1, λ2) = (−1, 1,−2, 2; 2, 1)

are the solutions of the KT conditions.
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