BI

| Solutions: | GRA 60352 | Mathematics |
| :--- | :--- | :--- | :--- |

Correct answers: C-D-C-A-B-C-A-B

Question 1.

The linear system is consistent since it is homogeneous. It has $n-\mathrm{rk} A=3-2=1$ degrees of freedom. The correct answer is alternative \mathbf{C}.

Question 2.

We form the matrix with the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ as columns, and compute its determinant

$$
\left|\begin{array}{ccc}
0 & 1 & s \\
1 & -s & s \\
1 & s & 1
\end{array}\right|=1 \cdot\left(s+s^{2}\right)-1 \cdot\left(1-s^{2}\right)=2 s^{2}+s-1
$$

We have $2 s^{2}+s-1=0$ when $s=-1$ or $s=1 / 2$. This shows that the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent when $s \neq-1,1 / 2$, and linearly dependent if $s=-1$ or $s=1 / 2$. The correct answer is alternative \mathbf{D}.

Question 3.

We reduce the matrix A to an echelon form:

$$
\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
2 & 3 & t & t-2 \\
1 & 3 & 3 & -1
\end{array}\right) \xrightarrow{-\rightarrow}\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
0 & 1 & t+2 & t \\
0 & 2 & 4 & 0
\end{array}\right) \xrightarrow{ } \quad \rightarrow\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
0 & 1 & t+2 & t \\
0 & 0 & -2 t & -2 t
\end{array}\right)
$$

There will be a pivot in the third row when $t \neq 0$, and no pivot when $t=0$. The correct answer is alternative \mathbf{C}.

Question 4.

The characteristic equation of A is

$$
\left|\begin{array}{ccc}
3-\lambda & -2 & 1 \\
0 & 2-\lambda & -3 \\
0 & 0 & 4-\lambda
\end{array}\right|=(3-\lambda)(2-\lambda)(4-\lambda)=0
$$

Hence the eigenvalues of A are $\lambda=3, \lambda=2$ and $\lambda=4$. The correct answer is alternative \mathbf{A}.

Question 5.

We compute $A \mathbf{v}$ and compare with $\lambda \mathbf{v}$, and see that

$$
\left(\begin{array}{cc}
2 & 3 \\
t & -1
\end{array}\right)\binom{2}{1}=\binom{7}{2 t-1}
$$

is a multiple of \mathbf{v} if and only if $t=9 / 4$ (with $\lambda=7 / 2$). The correct answer is alternative \mathbf{B}.

Question 6.

The symmetric matrix of the quadratic form $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+3 x_{1} x_{4}+2 x_{2}^{2}-8 x_{2} x_{4}+3 x_{3}^{2}+7 x_{4}^{2}$ is given by

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 3 / 2 \\
0 & 2 & 0 & -4 \\
0 & 0 & 3 & 0 \\
3 / 2 & -4 & 0 & 7
\end{array}\right)
$$

The leading principal minors are $D_{1}=1, D_{2}=1 \cdot 2=2, D_{3}=1 \cdot 2 \cdot 3=6$, and $D_{4}=|A|$ is given by

$$
D_{4}=\left|\begin{array}{cccc}
1 & 0 & 0 & 3 / 2 \\
0 & 2 & 0 & -4 \\
0 & 0 & 3 & 0 \\
3 / 2 & -4 & 0 & 7
\end{array}\right|=3(1(14-16)+3 / 2(0-3))=-39 / 2
$$

Hence f is indefinite. The correct answer is alternative \mathbf{C}.

Question 7.

We compute the first order derivatives to find stationary points, and find

$$
3 x^{2}+3 y^{2}-3=0, \quad 6 x y=0, \quad-4 z^{3}+4=0
$$

This gives four stationary points $(\pm 1,0,1)$ and $(0, \pm 1,1)$. We compute the Hessian matrix of f and find

$$
H(f)=\left(\begin{array}{ccc}
6 x & 6 y & 0 \\
6 y & 6 x & 0 \\
0 & 0 & -12 z^{2}
\end{array}\right)=\left(\begin{array}{ccc}
\pm 6 & 0 & 0 \\
0 & \pm 6 & 0 \\
0 & 0 & -12
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccc}
0 & \pm 6 & 0 \\
\pm 6 & 0 & 0 \\
0 & 0 & -12
\end{array}\right)
$$

Since $D_{2}=-36$ at the last two stationary points, they are saddle points. At $(1,0,1)$ we have $D_{1}=6$, $D_{2}=36$ and $D_{3}=-12 \cdot 36<0$ so this is also a saddle point. At $(-1,0,1)$ we have $D_{1}=-6, D_{2}=36$ and $D_{3}=-12 \cdot 36<0$ so this is a local maximum. It follows that there are local max but not local \min for f. The correct answer is alternative \mathbf{A}.

Question 8.

The function $f(x, y, z)=x^{-2} e^{a y}$ has Hessian matrix

$$
H(f)=\left(\begin{array}{cc}
6 x^{-4} e^{a y} & -2 a x^{-3} e^{a y} \\
-2 a x^{-3} e^{a y} & a^{2} x^{-2} e^{a y}
\end{array}\right)
$$

Hence $D_{1}=6 x^{-4} e^{a y}>0$ and $D_{2}=2 a^{2} x^{-6} e^{2 a y}>0$. It follows that $H(f)$ is positive definite for all (x, y) with $x>0$. Hence f is convex for all a. The correct answer is alternative \mathbf{B}.

