

Solutions:	GRA 60352	Mathematics			
Examination date:	11.10.2013	15:00 - 16:00	Total no. of pages:	3	
			No. of attachments:	0	
Permitted examination	A bilingual dictionary and BI-approved calculator TEXAS				
support material:	INSTRUMENTS BA II Plus				
Answer sheets:	Answer sheet for multiple-choice examinations				
	Counts 20%	of GRA 6035	The questions have ϵ	equal weight	
Ordinary exam			Responsible departm	ent: Economics	

Correct answers: D-C-D-A-C-B-C-C

QUESTION 1.

The linear system is consistent since it is homogeneous. It has $n - \operatorname{rk} A = 4 - 2 = 2$ degrees of freedom. The correct answer is alternative **D**.

QUESTION 2.

We form the matrix with the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ as columns, and compute its determinant

0	h-1		
h	1	1	= h - 1
1	1	1	

This shows that the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent when $h \neq 1$, and linearly dependent if h = 1. The correct answer is alternative \mathbf{C} .

QUESTION 3.

We reduce the matrix A to an echelon form:

$$\begin{pmatrix} 1 & 1 & -1 & -1 \\ 1 & 3 & h & -1 \\ 2 & 3 & 0 & h \end{pmatrix} \xrightarrow{- \to +} \begin{pmatrix} 1 & 1 & -1 & -1 \\ 0 & 2 & h + 1 & 0 \\ 0 & 1 & 2 & h + 2 \end{pmatrix} \xrightarrow{- \to +} \begin{pmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 2 & h + 2 \\ 0 & 0 & h - 3 & -2h - 4 \end{pmatrix}$$

There will be a pivot in the third row since all entries cannot be zero for any value of h. The correct answer is alternative **D**.

QUESTION 4.

The characteristic equation of A is

$$\begin{vmatrix} 5 - \lambda & 0 & -1 \\ 0 & 2 - \lambda & 0 \\ 4 & 0 & -\lambda \end{vmatrix} = (2 - \lambda)(\lambda^2 - 5\lambda + 4) = 0$$

Hence the eigenvalues of A are $\lambda = 2$, $\lambda = 1$ and $\lambda = 4$. The correct answer is alternative **A**.

QUESTION 5.

We compute $A\mathbf{v}$ and compare with $\lambda \mathbf{v}$, and see that

$$\begin{pmatrix} 1 & s \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2+s \\ 5 \end{pmatrix}$$

is a multiple of **v** if and only if s = 8 (with $\lambda = 5$ in that case). The correct answer is alternative **C**.

QUESTION 6.

The symmetric matrix of the quadratic form $f(x_1, x_2, x_3, x_4) = x_1^2 + 3x_1x_4 + 2x_2^2 + 6x_2x_4 + 3x_3^2 + 7x_4^2$ is given by

$$A = \begin{pmatrix} 1 & 0 & 0 & 3/2 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 3 & 0 \\ 3/2 & 3 & 0 & 7 \end{pmatrix}$$

The leading principal minors are $D_1 = 1$, $D_2 = 1 \cdot 2 = 2$, $D_3 = 1 \cdot 2 \cdot 3 = 6$, and $D_4 = |A|$ is given by

$$D_4 = \begin{vmatrix} 1 & 0 & 0 & 3/2 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 3 & 0 \\ 3/2 & 3 & 0 & 7 \end{vmatrix} = 3(1(14-9) + 3/2(0-3)) = 3/2$$

Hence f is positive definite. The correct answer is alternative **B**.

QUESTION 7.

We compute the first order derivatives to find stationary points, and find

$$3x^2 - 3y^2 - 3 = 0, \quad -6xy = 0, \quad -4z^3 + 4 = 0$$

This gives two stationary points $(\pm 1, 0, 1)$. We compute the Hessian matrix of f and find

$$H(f) = \begin{pmatrix} 6x & -6y & 0\\ -6y & -6x & 0\\ 0 & 0 & -12z^2 \end{pmatrix} = \begin{pmatrix} \pm 6 & 0 & 0\\ 0 & \mp 6 & 0\\ 0 & 0 & -12 \end{pmatrix}$$

Since $D_2 = -36$ at both stationary points, it follows that both are saddle points. The correct answer is alternative **C**.

QUESTION 8.

The function $f(x, y, z) = x^2 + 4xz + 3y^2 - 2yz + 7z^2 + hx^4$ has Hessian matrix

$$H(f) = \begin{pmatrix} 2+12hx^2 & 0 & 4\\ 0 & 6 & -2\\ 4 & -2 & 14 \end{pmatrix}$$

Hence $D_1 = 2 + 12hx^2$, $D_2 = 6(2 + 12hx^2) = 12 + 72hx^2$ and $D_3 = 64 + 960hx^2$ since $|A| = (2 + 12hx^2)(84 - 4) + 4(0 - 24) = 64 + 960hx^2$

We note that when a, b are constants with a > 0, then the sign of $a + bx^2$ is determined by the sign of b: If $b \ge 0$, then $a + bx^2 > 0$ for all x, and if b < 0 then $a + bx^2$ take both positive and negative values. It follows that H(f) is positive definite for all (x, y, z) when $h \ge 0$, and that H(f) is indefinite at some point (x, y, z) when h < 0. Hence f is concave for $h \ge 0$, and neither convex nor concave for h < 0. The correct answer is alternative \mathbf{C} .