

Correct answers: D-C-D-A-C-B-C-C

Question 1.

The linear system is consistent since it is homogeneous. It has $n-r k A=4-2=2$ degrees of freedom. The correct answer is alternative \mathbf{D}.

Question 2.

We form the matrix with the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ as columns, and compute its determinant

$$
\left|\begin{array}{ccc}
0 & h-1 & h \\
h & 1 & 1 \\
1 & 1 & 1
\end{array}\right|=h-1
$$

This shows that the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent when $h \neq 1$, and linearly dependent if $h=1$. The correct answer is alternative \mathbf{C}.

Question 3.

We reduce the matrix A to an echelon form:

$$
\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 3 & h & -1 \\
2 & 3 & 0 & h
\end{array}\right) \xrightarrow{-}\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
0 & 2 & h+1 & 0 \\
0 & 1 & 2 & h+2
\end{array}\right) \xrightarrow{1}\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
0 & 1 & 2 & h+2 \\
0 & 0 & h-3 & -2 h-4
\end{array}\right)
$$

There will be a pivot in the third row since all entries cannot be zero for any value of h. The correct answer is alternative \mathbf{D}.

Question 4.

The characteristic equation of A is

$$
\left|\begin{array}{ccc}
5-\lambda & 0 & -1 \\
0 & 2-\lambda & 0 \\
4 & 0 & -\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-5 \lambda+4\right)=0
$$

Hence the eigenvalues of A are $\lambda=2, \lambda=1$ and $\lambda=4$. The correct answer is alternative \mathbf{A}.

Question 5.

We compute $A \mathbf{v}$ and compare with $\lambda \mathbf{v}$, and see that

$$
\left(\begin{array}{cc}
1 & s \\
3 & -1
\end{array}\right)\binom{2}{1}=\binom{2+s}{5}
$$

is a multiple of \mathbf{v} if and only if $s=8$ (with $\lambda=5$ in that case). The correct answer is alternative \mathbf{C}.

Question 6.

The symmetric matrix of the quadratic form $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+3 x_{1} x_{4}+2 x_{2}^{2}+6 x_{2} x_{4}+3 x_{3}^{2}+7 x_{4}^{2}$ is given by

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 3 / 2 \\
0 & 2 & 0 & 3 \\
0 & 0 & 3 & 0 \\
3 / 2 & 3 & 0 & 7
\end{array}\right)
$$

The leading principal minors are $D_{1}=1, D_{2}=1 \cdot 2=2, D_{3}=1 \cdot 2 \cdot 3=6$, and $D_{4}=|A|$ is given by

$$
D_{4}=\left|\begin{array}{cccc}
1 & 0 & 0 & 3 / 2 \\
0 & 2 & 0 & 3 \\
0 & 0 & 3 & 0 \\
3 / 2 & 3 & 0 & 7
\end{array}\right|=3(1(14-9)+3 / 2(0-3))=3 / 2
$$

Hence f is positive definite. The correct answer is alternative \mathbf{B}.

Question 7.

We compute the first order derivatives to find stationary points, and find

$$
3 x^{2}-3 y^{2}-3=0, \quad-6 x y=0, \quad-4 z^{3}+4=0
$$

This gives two stationary points $(\pm 1,0,1)$. We compute the Hessian matrix of f and find

$$
H(f)=\left(\begin{array}{ccc}
6 x & -6 y & 0 \\
-6 y & -6 x & 0 \\
0 & 0 & -12 z^{2}
\end{array}\right)=\left(\begin{array}{ccc}
\pm 6 & 0 & 0 \\
0 & \mp 6 & 0 \\
0 & 0 & -12
\end{array}\right)
$$

Since $D_{2}=-36$ at both stationary points, it follows that both are saddle points. The correct answer is alternative \mathbf{C}.

Question 8.

The function $f(x, y, z)=x^{2}+4 x z+3 y^{2}-2 y z+7 z^{2}+h x^{4}$ has Hessian matrix

$$
H(f)=\left(\begin{array}{ccc}
2+12 h x^{2} & 0 & 4 \\
0 & 6 & -2 \\
4 & -2 & 14
\end{array}\right)
$$

Hence $D_{1}=2+12 h x^{2}, D_{2}=6\left(2+12 h x^{2}\right)=12+72 h x^{2}$ and $D_{3}=64+960 h x^{2}$ since

$$
|A|=\left(2+12 h x^{2}\right)(84-4)+4(0-24)=64+960 h x^{2}
$$

We note that when a, b are constants with $a>0$, then the sign of $a+b x^{2}$ is determined by the sign of b : If $b \geq 0$, then $a+b x^{2}>0$ for all x, and if $b<0$ then $a+b x^{2}$ take both positive and negative values. It follows that $H(f)$ is positive definite for all (x, y, z) when $h \geq 0$, and that $H(f)$ is indefinite at some point (x, y, z) when $h<0$. Hence f is concave for $h \geq 0$, and neither convex nor concave for $h<0$. The correct answer is alternative \mathbf{C}.

