BI

| Solutions: | GRA 60353 | Mathematics |
| :--- | :--- | :--- | :--- |
| Examination date: | $12.05 .2014 \quad 09: 00-12: 00$ | Total no. of pages: 4 |
| Permitted examination | A bilingual dictionary and BI-approved calculator TEXAS | |
| support material: | INSTRUMENTS BA II Plus | |
| Answer sheets: | Squares | |
| | Counts 80% of GRA 6035 | The subquestions have equal weight |
| Re-take exam | | Responsible department: Economics |

Question 1.

(a) Gaussian elimination of A and $A+I$ to echelon form gives

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right) \text { and } A+I=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Therefore, we have $\operatorname{rk} A=3$ and $\operatorname{rk}(A+I)=1$.
(b) The characteristic equation for A is given by

$$
\left|\begin{array}{ccc}
-\lambda & 1 & 1 \\
1 & -\lambda & 1 \\
1 & 1 & -\lambda
\end{array}\right|=-\lambda\left(\lambda^{2}-1\right)-1(-\lambda-1)+1(1+\lambda)=(\lambda+1)(-\lambda(\lambda-1)+2)=0
$$

Therefore, the eigenvalues of A are given by $\lambda=-1$ and $-\lambda^{2}+\lambda+2=0$, and the last equation gives

$$
\lambda=\frac{-1 \pm \sqrt{9}}{-2}=\frac{-1 \pm 3}{-2}=2,-1
$$

The conclusion is that the eigenvalues are $\lambda_{1}=\lambda_{2}=-1$ and $\lambda_{3}=2$.
Alternative: It is possible to see that $\lambda=-1$ is an eigenvalue of multiplicity 2 from the fact that $\operatorname{rk}(A+I)=1$, and since the sum of the eigenvalues is $(-1)+(-1)+\lambda=\operatorname{tr}(A)=0$ we can conclude that the last eigenvalue is $\lambda=2$. We could also have used that the product of the eigenvalues is $(-1)(-1) \lambda=\operatorname{det} A=2$ to find that $\lambda=2$.
(c) The matrix A is symmetric, therefore it is diagonalizable.

Alternative: Since $\lambda=-1$ has multiplicity two while $\lambda=2$ has multiplicity one, we check that the number of degrees of freedom of the linear system $(A-\lambda I) \mathbf{x}=\mathbf{0}$ for $\lambda=-1$: It has two degrees of freedom, $\operatorname{since} \operatorname{rk}(A+I)=1$ and $n-\operatorname{rk}(A+I)=3-1=2$. Therefore there are enough eigenvalues and enough eigenvectors, and A is diagonalizable.

Question 2.

(a) The partial derivatives of $f(x, y, z, w)=x^{3}+3 x y^{2}-3 x-2 z^{3}+6 z w^{2}-3 w$ are given by

$$
f_{x}^{\prime}=3 x^{2}+3 y^{2}-3, \quad f_{y}^{\prime}=6 x y, \quad f_{z}^{\prime}=-6 z^{2}+6 w^{2}, \quad f_{w}^{\prime}=12 z w-3
$$

and its Hessian matrix is given by

$$
H(f)(x, y, z, w)=\left(\begin{array}{cccc}
6 x & 6 y & 0 & 0 \\
6 y & 6 x & 0 & 0 \\
0 & 0 & -12 z & 12 w \\
0 & 0 & 12 w & 12 z
\end{array}\right)
$$

(b) The stationary points of f are given by
$f_{x}^{\prime}=3 x^{2}+3 y^{2}-3=0, \quad f_{y}^{\prime}=6 x y=0, \quad f_{z}^{\prime}=-6 z^{2}+6 w^{2}=0, \quad f_{w}^{\prime}=12 z w-3=0$
From the first two equations, we get $x^{2}+y^{2}=1$ and $x y=0$, which gives $(x, y)=(\pm 1,0)$ or $(x, y)=(0, \pm 1)$. From the last two equations, we get $z^{2}=w^{2}$ and $z w=1 / 4$, which gives $z= \pm w$, and since $z w=1 / 4>0$, it must be $z=w$. Finally, $z w=z^{2}=1 / 4$ gives $z=w= \pm 1 / 2$. The stationary points are therefore the eight points
$(x, y, z, w)=(\pm 1,0,1 / 2,1 / 2),(\pm 1,0,-1 / 2,-1 / 2),(0, \pm 1,1 / 2,1 / 2),(0, \pm 1,-1 / 2,-1 / 2)$
When $(x, y)=(0, \pm 1)$, the Hessian matrix is given by

$$
H(f)(0, \pm 1, z, w)=\left(\begin{array}{cccc}
0 & \pm 6 & 0 & 0 \\
\pm 6 & 0 & 0 & 0 \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right)
$$

and has $D_{2}=-36<0$. The four stationary points with $(x, y)=(0, \pm 1)$ are therefore saddle points. When $(x, y)=(\pm 1,0)$ and $(z, w)=(1 / 2,1 / 2)$ or $(-1 / 2,-1 / 2)$, we get

$$
D_{4}=\left|\begin{array}{cccc}
6 x & 0 & 0 & 0 \\
0 & 6 x & 0 & 0 \\
0 & 0 & -12 z & 12 w \\
0 & 0 & 12 w & 12 z
\end{array}\right|=36 x^{2}\left(-144 z^{2}-144 w^{2}\right)<0
$$

since $x^{2}=1$ and $z^{2}=w^{2}=1 / 4$. The four stationary points with $(x, y)=(\pm 1,0)$ are therefore also saddle points. We conclude that all stationary points are saddle points.
(c) The function f is not concave. If it were concave, then $D_{1}=f_{x x}^{\prime \prime} \geq 0$ for all (x, y, z, w) but this is not the case since $f_{x x}^{\prime \prime}=6 x$. Another argument is that if f were concave, then all stationary points would be (local and global) maximum points, but this is not the case.

Question 3.

(a) The difference equation $y_{t+1}-2 y_{t}=3 t$ is first order linear, and it has solution $y_{t}=y_{t}^{h}+y_{t}^{p}$. The homogeneous equation $y_{t+1}-2 y_{t}=0$ has solution $y_{t}^{h}=C \cdot 2^{t}$. To find a particular solution y_{t}^{p}, we consider the right hand side $f_{t}=3 t$ and the shifted expressions $f_{t+1}=3 t+3$. We guess that there is a solution of the form $y_{t}=A t+B$. Inserting this guess in the difference equation, we obtain

$$
(A t+B+A)-2(A t+B)=3 t
$$

or $(-A) t+(A-B)=3 t$. We see that $A=B=-3$ is a solution, so $y_{t}^{p}=-3 t-3$ and the general solution is

$$
y_{t}=y_{t}^{h}+y_{t}^{p}=C \cdot 2^{t}-3 t-3
$$

(b) The differential equation $y^{\prime \prime}-12 y^{\prime}+20 y=2 t e^{t}$ is second order linear, and it has solution $y=y_{h}+y_{p}$. The homogeneous equation $y^{\prime \prime}-12 y^{\prime}+20 y=0$ has characteristic equation given by $r^{2}-12 r+20=0$, and has solutions $r=2,10$, so the homogeneous solution is $y_{h}=C_{1} e^{2 t}+C_{2} e^{10 t}$. To find a particular solution, we consider the right hand side $f(t)=2 t e^{t}$
and its derivatives $f^{\prime}=(2 t+2) e^{t}$ and $f^{\prime \prime}=(2 t+4) e^{t}$. We guess that there is a solution of the form $y=(A t+B) e^{t}$. Inserting this guess in the differential equation, we obtain

$$
(A t+B+2 A) e^{t}-12(A t+B+A) e^{t}+20(A t+B) e^{t}=2 t e^{t}
$$

or $(9 A t+9 B-10 A) e^{t}=2 t e^{t}$. We see that there is a solution with $9 A=2$ and $9 B-10 A=0$, or $A=2 / 9$ and $B=20 / 81$. This means that $y_{p}=(2 / 9 t+20 / 81) e^{t}$ is a particular solution, and that the general solution is

$$
y=y_{h}+y_{p}=C_{1} e^{2 t}+C_{2} e^{10 t}+\frac{18 t+20}{81} e^{t}
$$

(c) The differential equation $y^{\prime}+\ln (t) y=\ln (t)$ is first order linear, and it is in standard form $y^{\prime}+a(t) y=b(t)$ with $a(t)=b(t)=\ln t$. It has integrating factor $u=e^{\int a(t) \mathrm{d} t}$, and

$$
\int \ln (t) \mathrm{d} t=t \ln (t)-t+\mathcal{C}
$$

We therefore multiplity the differential equation with $u=e^{t \ln t-t}$, and get

$$
\left(y e^{t \ln t-t}\right)^{\prime}=\ln (t) e^{t \ln t-t} \Rightarrow y e^{t \ln t-t}=\int \ln (t) e^{t \ln t-t} \mathrm{~d} t=e^{t \ln t-t}+\mathcal{C}
$$

We have solved the integral using the substitution $v=t \ln t-t$ which gives $\mathrm{d} v=\ln t \mathrm{~d} t$. This implies that the solution of the differential equation is

$$
y=\frac{e^{t \ln t-t}+\mathcal{C}}{e^{t \ln t-t}}=1+C e^{-t \ln t+t}
$$

for $t>0$.

Question 4.

(a) The Kuhn-Tucker problem is already in standard form, so we form the Lagrangian

$$
\mathcal{L}=x^{3}+y^{3}+z^{3}-3 x y z-\lambda\left(x^{3}+y^{3}+z^{3}\right)
$$

The first order conditions (FOC) are

$$
\begin{aligned}
& \mathcal{L}_{x}^{\prime}=3 x^{2}-3 y z-3 \lambda x^{2}=0 \\
& \mathcal{L}_{y}^{\prime}=3 y^{2}-3 x z-3 \lambda y^{2}=0 \\
& \mathcal{L}_{z}^{\prime}=3 z^{2}-3 x y-3 \lambda z^{2}=0
\end{aligned}
$$

the constraint (C) is given by $x^{3}+y^{3}+z^{3} \leq 8$, and the complementary slackness conditions (CSC) are given by

$$
\lambda \geq 0 \quad \text { and } \lambda\left(x^{3}+y^{3}+z^{3}-8\right)=0
$$

When $\lambda=1$, the FOC's are given by $y z=x z=x y=0$, which means that at least two of the variables are zero, and the CSC means that $x^{3}+y^{3}+z^{3}=8$. If $y=z=0$, then $x^{3}=8$ and therefore $x=2$, and the two other cases are similar. We find exactly three solutions to the KT conditions when $\lambda=1$,

$$
(x, y, z)=(2,0,0),(0,2,0),(0,0,2)
$$

and $f=8$ at all three points.
(b) An admissible point is one where the constraint $x^{3}+y^{3}+z^{3} \leq 8$ is satisfied. The NDCQ is given by $\operatorname{rk} J(x, y, z)=1$ when $x^{3}+y^{3}+z^{3}=8$ (constraint is binding), and there is no NDCQ condition when $x^{3}+y^{3}+z^{3}<8$ (constraint is non-binding). The matrix $J(x, y, z)$ is given by the partial derivatives of the constraint:

$$
J(x, y, z)=\left(\begin{array}{lll}
3 x^{2} & 3 y^{2} & 3 z^{2}
\end{array}\right)
$$

The only possibility for NDCQ to fail is if $\operatorname{rk} J=0$ and the constrating is binding. This will not happen, since rk $J=0$ only if $3 x^{2}=3 y^{2}=3 z^{2}=0$, or if $(x, y, z)=(0,0,0)$, and the constraint is not binding at this point. Therefore, NDCQ is satisfied at all admissible points.
(c) The set of admissible points (points that satisfy $x^{3}+y^{3}+z^{3} \leq 8$) is not bounded, since the points $(x, y, z)=(a, 0,0)$ satisfies the constraint as long as $a^{3} \leq 8$, or $a<2$, and this includes all negative values of a.
(d) The Kuhn-Tucker problem does not have a solution. We prove this by finding admissible points where the function value is arbitary large (goes towards infinity):
The point $(x, y, z)=(2, b,-b)$ satisfy the constraint $x^{3}+y^{3}+z^{3} \leq 8$ for any value of b, since $2^{3}+b^{3}+(-b)^{3}=2^{3}=8$. In other words, the point $(x, y, z)=(2, b,-b)$ is admissible for any value of b. The function value is given by

$$
f(2, b,-b)=2^{3}+b^{3}+(-b)^{3}-3 \cdot 2 b(-b)=8+6 b^{2}
$$

Note that $f(2, b,-b)=8+6 b^{2} \rightarrow \infty$ as $b \rightarrow \infty$, and that $(2, b,-b)$ is admissible also when b is very large. This proves that the Kuhn-Tucker problem has no solution.

