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Question 1.

(a) The partial derivatives of f(x, y, z, w) = xw − yz are given by

f ′x = w, f ′y = −z, f ′z = −y, f ′w = x

and its Hessian matrix is given by

H(f)(x, y, z, w) =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


(b) The stationary points of f are given by

f ′x = w = 0, f ′y = −z = 0, f ′z = −y = 0, f ′w = x = 0

and there is a unique solution (x, y, z, w) = (0, 0, 0, 0). The Hessian matrix at this point is the
symmetric matrix

H(f)(0, 0, 0, 0) =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


We have that D1 = D2 = D3 = 0 and D4 = det(A) = (−1)(−1) · 1 · 1 = 1, and we must check
the remaining principal minors to determine the definiteness of the matrix. All principal
minors of order one (the elements on the diagonal) are zero, but there is a second order
principal minor that is negative; the principal minor obtained by keeping row 2, 3 and column
2, 3 in A is ∆2 = −1. This means that the Hessian matrix at (0, 0, 0, 0) is indefinite, and
therefore the stationary point (0, 0, 0, 0) is a saddle point.

(c) If there were a global max for f , it would also be a local max. But there is no local max, since
the only stationary point for f is a saddle point. Therefore, f has no global max.
Altenative: Consider points where x = w = a and y = z = 0 for some number a. Then the
value of f is

f(x, y, z, w) = f(a, 0, 0, a) = a2

and a2 → ∞ as a → ∞. This implies that choosing points along a certain trajectory, the
values of f goes toward ∞ and therefore f has no global maximum value.
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Question 2.

(a) The matrices A+ I and A− I are given by

A+ I =


1 0 0 1

0 1 −1 0

0 −1 1 0

1 0 0 1

 , A− I =


−1 0 0 1

0 −1 −1 0

0 −1 −1 0

1 0 0 −1


In both cases, Gaussian elimination gives an echelon form with zeros in the last two rows.
Therefore, both matrices have two pivot positions and rk(A+ I) = rk(A− I) = 2.

(b) The matrix A is symmetric, therefore it is diagonalizable.
Alternative 1: Since rk(A+ I) = rk(A− I) = 2, we see that det(A− λI) = 0 when λ = ±1,
and this implies that λ = −1 and λ = 1 are eigenvalues of A. Moreover, there are two linearly
independent eigenvectors for each of these eigenvectors since the number of free variables is
given by n−rk(A−λI) = 4−2 = 2 in each case by (a). Therefore there are enough eigenvalues
and enough eigenvectors, and A is diagonalizable.
Alternative 2: Find all eigenvalues using the characteristic equation. Its left side is given by

det(A− λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 1

0 −λ −1 0

0 −1 −λ 0

1 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
= −λ

∣∣∣∣∣∣∣∣∣
−λ −1 0

−1 −λ 0

0 0 −λ

∣∣∣∣∣∣∣∣∣− 1

∣∣∣∣∣∣∣∣∣
0 0 1

−λ −1 0

−1 −λ 0

∣∣∣∣∣∣∣∣∣
Hence the characteristic equation is λ2(λ2 − 1)− 1(λ2 − 1) = 0, or (λ2 − 1)(λ2 − 1) = 0, and
the eigenvalues are λ = 1 and λ = −1, both with multiplicity two. By the same argument as
in Alternative 1, there are 4 − 2 = 2 free variable in (A − λI)x = 0 for λ = 1 and λ = −1.
Hence there are enough eigenvalues and eigenvectors, and A is diagonalizable.

(c) We compute the eigenvectors for λ = −1 by solving the linear system (A + I)x = 0. Since
rk(A+ I) = 2, there are 4− 2 = 2 free variables, and since we got pivot positions at (1, 1) and
(2, 2) in (a), we may take x3 and x4 as free variables and solve for x1 and x2 in the first two
equations to get x1 = −x4 and x2 = x3. The eigenvectors for λ = −1 are therefore given by

x =


−x4
x3

x3

x4

 = x3


0

1

1

0

+ x4


−1

0

0
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Question 3.

(a) The difference equation yt+2 − 11yt+1 + 28yt = 36t + 18 is second order linear, and it has
solution yt = yht + ypt . The homogeneous equation yt+2 − 11yt+1 + 28yt = 0 has characteristic
equation r2−11r+28 = 0, and distinct roots r = 4 and r = 7. Therefore yht = C1 ·4t +C2 ·7t.
To find a particular solution ypt , we consider the right hand side ft = 36t+ 18 and the shifted
expressions ft+1 = 36t+ 54 and ft+2 = 36t+ 90. We guess that there is a solution of the form
yt = At+B. Inserting this guess in the difference equation, we obtain

(At+B + 2A)− 11(At+B +A) + 28(At+B) = 36t+ 18

or (18A)t+(−9A+18B) = 36t+18. We see that A = 2 and B = 2 is a solution, so ypt = 2t+2
and the general solution is

yt = yht + ypt = C1 · 4t + C2 · 7t + 2t+ 2
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(b) The differential equation y′ = 4y+tet is first order linear, and can be written in standard form
as y′ − 4y = tet. It has solution y = yh + yp, and the homogeneous solutions yh = Ce4t since
the characteristic equation r − 4 = 0 of the homogeneous equation has root r = 4. To find a
particular solution, we consider the right hand side f(t) = tet and its derivatives f ′ = (t+1)et

and f ′′ = (t + 2)et. We guess that there is a solution of the form y = (At + B)et. Inserting
this guess in the differential equation, we obtain

(At+B +A)et − 4(At+B)et = tet

or (−3At+ A− 3B)et = tet. We see that there is a solution with −3A = 1 and A− 3B = 0,
or A = −1/3 and B = −1/9. This means that yp = (−3t− 1)et/9 is a particular solution, and
that the general solution is

y = yh + yp = Ce4t − 3t+ 1

9
et

Alternative: It can also be solved using integrating factor e−4t. We get the general solution

y =
1

e−4t

∫
te−3t dt = e4t(−1

3
te−3t − 1

9
e−3t + C) = Ce4t − 3t+ 1

9
et

(c) The differential equation can be written in the form py′ + q = 0 with

p =
y

y2 + t2 + 3
, q =

t

y2 + t2 + 3

We attempt to find an expression h = h(y, t) such that h′y = p and h′t = q. From the first

equation, we see that h = 1
2 ln(y2 + t2 + 3) + φ(t) is a solution, and using this expression for

h we get

h′t =
t

y2 + t2 + 3
+ φ′(t), q =

t

y2 + t2 + 3

This implies that the second equation h′t = q is satisfied if φ′(t) = 0, and we may choose
φ(t) = 0 and h = ln(y2 + t2 + 3)/2. Hence the differential equation is exact, and its solution
is given by

ln(y2 + t2 + 3)/2 = C ⇔ y2 + t2 = e2C − 3 = K

In other words, y = ±
√
K − t2. The initial condition y(1) = 2 gives 2 = +

√
K − 1 or K = 5,

and the particular solution is

y =
√

5− t2

Question 4.

(a) The Kuhn-Tucker problem is already in standard form, so we form the Lagrangian

L = xw − yz − λ1(x2 + y2)− λ2(4z2 + 9w2)

The first order conditions (FOC) are

L′x = w − 2λ1x = 0

L′y = −z − 2λ1y = 0

L′z = −y − 8λ2z = 0

L′w = x− 18λ2w = 0

the constraints (C) are given by x2 + y2 ≤ 1 and 4z2 + 9w2 ≤ 36, and the complementary
slackness conditions (CSC) are given by

λ1 ≥ 0 and λ1(x
2 + y2 − 1) = 0

λ2 ≥ 0 and λ2(4z
2 + 9w2 − 36) = 0

When (x, y, z, w) = (0, 1,−3, 0), we see that the the first and last of the FOC’s are satisfied,
and the remaining FOC’s are satisfied if λ1 = 3/2 and λ2 = 1/24. The constraints are satisfied
(and binding), and this implies that the CSC are satisfied as well since λ1, λ2 ≥ 0.
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(b) It follows from the SOC that (x, y, z, w) = (0, 1,−3, 0) solves the max problem if the function
L(x, y, z, w; 3/2, 1/24) is concave in (x, y, z, w). We prove that this is the case: The function
is given by

L(x, y, z, w;λ∗1, λ
∗
2) = xw − yz − 3/2(x2 + y2)− 1/24(4z2 + 9w2)

Its Hessian matrix is given by

H =


−3 0 0 1

0 −3 −1 0

0 −1 −1/3 0

1 0 0 −3/4


The leading principal minors are D1 = −3, D2 = 9, D3 = 0 and D4 = 0, so we have to
compute all principal minor to be sure that the function is concave. The four principal minors
of order one are

∆1 = −3,−3,−1/3,−3/4 ≤ 0

the six principal minors of order two are

∆2 = 9, 1, 5/4, 0, 9/4, 1/4 ≥ 0

and the four principal minors of order three are

∆3 = 0, 0,−15/4,−5/12 ≤ 0

and the only principal minor of order four is D4 = 0 ≥ 0. It follows that the Hessian is
negative semidefinite, and therefore that L(x, y, z, w;λ∗1, λ

∗
2) is concave in (x, y, z, w). Hence

(x, y, z, w) = (0, 1,−3, 0) is max, with max value f(0, 1,−3, 0) = 3.
(c) We consider the Kuhn-Tucker problem with parameter c given by

max f(x, y, z, w) = xw − yz subject to

{
x2 + y2 ≤ 1

cz2 + 9w2 ≤ 36

which we have solved for c = 4. It has Lagrangian

L = xw − yz − λ1(x2 + y2)− λ2(cz2 + 9w2)

and therefore L′c = −λ2z2. By the Envelope Theorem, the maximum value changes with
approximately

∆c · L′c(x∗, y∗, z∗, w∗;λ∗1, λ∗2) = (4.2− 4) · (−1/24 · (−3)2) = −0.075

when c changes from c = 4 to c = 4.2. The new maximum value is therefore approximately
equal to 3− 0.075 = 2.925. (And it is exactly equal to

√
36/4.2 ∼= 2.9277).

(d) To solve the Kuhn-Tucker conditions (FOC+C+CSC) in a), we start with the FOC’s: From
the first and last of them, we see that

w = 2λ1x, x = 18λ2w ⇒ w = 36λ1λ2w

This implies that w(1−36λ1λ2) = 0, so either w = 0 (which implies that x = 0) or λ1λ2 = 1/36.
From the second and third FOC’s, we get in a similar way that

z = −2λ1y, y = −8λ2z ⇒ z = 16λ1λ2z

This implies that z(1−16λ1λ2) = 0, so either z = 0 (which implies that y = 0) or λ1λ2 = 1/16.
Case A: x = y = z = w = 0 In this case, all FOC’s are satisfied, both constraints are satisfied
and not binding, so λ1 = λ2 = 0 by the CSC’s. We obtain one solution

(x, y, z, w;λ1, λ2) = (0, 0, 0, 0; 0, 0), f = 0

Case B: x = w = 0, z 6= 0 In this case, λ1λ2 = 1/16 since z 6= 0. This implies that λ1, λ2 > 0
by the CSC’s, and both constraints must be binding, so x2 + y2 = 1 and 4z2 + 9w2 = 36.
Since x = 0, we must have y = ±1, and since w = 0 we must have z = ±3. From the FOC
z = −2λ1y, we see that y and z must have oposite signs, and that λ1 = 3/2 and therefore
that λ2 = 1/24. We obtain two solutions

(x, y, z, w;λ1, λ2) = (0,±1,∓3, 0; 3/2, 1/24), f = 3
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Case C: y = z = 0, w 6= 0 In this case, λ1λ2 = 1/36 since w 6= 0. This implies that λ1, λ2 > 0
by the CSC’s, and both constraints must be binding, so x2 + y2 = 1 and 4z2 + 9w2 = 36.
Since y = 0, we must have x = ±1, and since z = 0 we must have w = ±2. From the FOC
w = 2λ1x, we see that w and x must have the same sign, and that λ1 = 1 and therefore that
λ2 = 1/36. We obtain two solutions

(x, y, z, w;λ1, λ2) = (±1, 0, 0,±2; 1, 1/36), f = 2
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