Problem Session 3
 GRA 6035 Mathematics

November 12, 2012

BI Norwegian Business School

Problems

1. Write down the Kuhn-Tucker conditions and solve them in the following KuhnTucker problems:
a) $\max f(x, y)=x y$ subject to $x+4 y \leq 16$
b) $\max f(x, y)=x^{2} y$ subject to $2 x^{2}+y^{2} \leq 3$
c) $\max f(x, y, z)=x y z$ subject to $x^{2}+y^{2} \leq 1$ and $x+z \geq 1$
d) $\max f(x, y)=x y$ subject to $x^{2}+y^{2} \leq 1$
e) $\max f(x, y, z)=x y z$ subject to $x+y+z \leq 1, x \geq 0, y \geq 0$ and $z \geq 0$
f) $\max f(x, y, z)=x y z+z$ subject to $x^{2}+y^{2}+z \leq 6, x \geq 0, y \geq 0$ and $z \geq 0$
2. Solve the Kuhn-Tucker problems in Problem 1 .
3. When x thousand dollars is spent on labor and y thousand dollars is spent on equipment, a certain factory produces $Q(x, y)=50 x^{1 / 2} y^{2}$ units of output.
a) How should $\$ 80.000$ be allocated between labor and equipment to yield the largest possible output?
b) Use an envelope theorem to estimate the change in maximum output if this allocation is decreased by $\$ 1.000$.
c) Compute the exact change in b).
4. Write down the Lagrange conditions and solve them in the following Lagrange problems:
a) $\max f(x, y)=x y$ subject to $x+4 y=16$
b) $\max f(x, y)=x^{2} y$ subject to $2 x^{2}+y^{2}=3$
c) $\max f(x, y, z)=x y z$ subject to $x^{2}+y^{2}=1$ and $x+z=1$
d) $\min f(x, y)=x^{2}+y^{2}$ subject to $x^{2}+x y+y^{2}=3$
e) $\min f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to $3 x+y+z=5$ and $x+y+z=1$
f) $\max / \min f(x, y, z)=x+y+z^{2}$ subject to $x^{2}+y^{2}+z^{1}=1$ and $y=0$
g) $\max f(x, y, z)=x z+y z$ subject to $y^{2}+z^{2}=1$ and $x z=3$
h) $\max x^{2} y^{2} z^{2}$ subject to $x^{2}+y^{2}+z^{2}=3$
5. Solve the Lagrange problems in Problem4
