Problem Sheet 9 with Solutions GRA 6035 Mathematics

Problems

1. Solve the optimization problem

$$
\max f(x, y)=x^{2}+y^{2}+y-1 \quad \text { subject to } \quad x^{2}+y^{2} \leq 1
$$

What is the maximum value?
2. Solve $\max \left(1-x^{2}-y^{2}\right)$ subject to $x \geq 2$ and $y \geq 3$ by a direct argument and then see what the Kuhn-Tucker conditions have to say about the problem.
3. Solve the following problem (assuming it has a solution):

$$
\min 4 \ln \left(x^{2}+2\right)+y^{2} \quad \text { subject to } \quad\left\{\begin{array}{l}
x^{2}+y \geq 2 \\
x \geq 1
\end{array}\right.
$$

4. Mock Final Exam in GRA6035 12/2010, 4

We consider the following optimization problem: Maximize $f(x, y, z)=x y+y z-x z$ subject to the constraint $x^{2}+y^{2}+z^{2} \leq 1$.
a) Write down the first order conditions for this problem, and solve the first order conditions for x, y, z using matrix methods.
b) Solve the optimization problem. Make sure that you check the non-degenerate constraint qualification, and also make sure that you show that the problem has a solution.

5. Final Exam in GRA6035 10/12/2010, 4

We consider the function $f(x, y, z)=x y z$.
a) The function g is defined on the set $D=\{(x, y, z): x>0, y>0, z>0\}$, and it is given by

$$
g(x, y, z)=\frac{1}{f(x, y, z)}=\frac{1}{x y z}
$$

Is g a convex or concave function on D ?
b) Maximize $f(x, y, z)$ subject to $x^{2}+y^{2}+z^{2} \leq 1$.

6. Final Exam in GRA6035 30/05/2011, Problem 4

We consider the function f, given by $f(x, y)=x y e^{x+y}$, with domain of definition $D_{f}=\left\{(x, y):(x+1)^{2}+(y+1)^{2} \leq 1\right\}$.
a) Compute the Hessian of f. Is f a convex function? Is f a concave function?
b) Find the maximum and minimum values of f.

Solutions

1 The Lagrangian is $\mathscr{L}(x, y, z, \lambda)=x^{2}+y^{2}+y-1-\lambda\left(x^{2}+y^{2}\right)$, and we write down and solve the Kuhn-Tucker conditions: The first order conditions

$$
\begin{aligned}
& \mathscr{L}_{x}^{\prime}=2 x-\lambda \cdot 2 x=0 \\
& \mathscr{L}_{y}^{\prime}=2 y+1-\lambda \cdot 2 y=0
\end{aligned}
$$

together with the constraint $x^{2}+y^{2} \leq 1$ and the complementary slackness conditions

$$
\lambda \geq 0 \quad \text { and } \quad \lambda=0 \text { if } x^{2}+y^{2}<1
$$

From the first of the first order conditions, we see that $x=0$ or $\lambda=1$. Since $\lambda=1$ contradicts the second of the first order conditions, we see that $x=0$. From the second of the first order conditions we have

$$
2 y(\lambda-1)=1 \quad \Rightarrow \quad y=\frac{1}{2(\lambda-1)}
$$

This implies that

$$
x^{2}+y^{2}=\frac{1}{4(\lambda-1)^{2}} \leq 1
$$

We first consider the case $x^{2}+y^{2}=1$. In this case, we have $1=4(\lambda-1)^{2}$, or that $\lambda= \pm 1 / 2+1$. Both solutions satisfy $\lambda \geq 0$, and this gives two solution

$$
(x, y ; \lambda)=\left(0,1 ; \frac{3}{2}\right),\left(0,-1 ; \frac{1}{2}\right)
$$

of the Kuhn-Tucker conditions in case $x^{2}+y^{2}=1$. Secondly, we consider the case when $x^{2}+y^{2}<1$, which gives $\lambda=0$ by the complementary slackness condition. Since $x^{2}+y^{2}=1 / 4<1$, this gives the solution

$$
(x, y ; \lambda)=\left(0,-\frac{1}{2} ; 0\right)
$$

of the Kuhn-Tucker conditions in case $x^{2}+y^{2}<1$. The solutions of the Kuhn-Tucker conditions give $f(0,1)=1, f(0,-1)=-1$ and $f(0,-1 / 2)=-5 / 4$, so the solution $\left(x^{*}, y^{*} ; \lambda^{*}\right)=(0,1 ; 3 / 2)$ is the best candidate for maximum. The Lagrangian $\mathscr{L}\left(x, y ; \lambda^{*}\right)=-x^{2} / 2-y^{2} / 2+y-1$ is clearly concave, so $\left(x^{*}, y^{*}\right)=(0,1)$ is the maximum point, with maximal value $f^{*}=f\left(x^{*}, y^{*}\right)=1$.
2 We see that $f(x, y)=1-x^{2}-y^{2}$ will decrease as x increases and as y increases, since x and y are positive. Therefore the maximum will occur at $x=2, y=3$, which are the smallest possible values of x and y, and the maximum value is

$$
f(2,3)=1-4-9=-12
$$

To write down the Kuhn-Tucker conditions, we write the problem in standard form

$$
\max 1-x^{2}-y^{2} \quad \text { subject to } \quad\left\{\begin{array}{l}
-x \leq-2 \\
-y \leq-3
\end{array}\right.
$$

The Lagrangian is $\mathscr{L}(x, y, z, \lambda)=1-x^{2}-y^{2}+\lambda_{1} x+\lambda_{2} y$, and we write down and solve the Kuhn-Tucker conditions: The first order conditions

$$
\begin{aligned}
\mathscr{L}_{x}^{\prime} & =-2 x+\lambda_{1}=0 \\
\mathscr{L}_{y}^{\prime} & =-2 y+\lambda_{2}=0
\end{aligned}
$$

together with the constraints $x \geq 2$ and $y \geq 3$ and the complementary slackness conditions

$$
\lambda_{1}, \lambda_{2} \geq 0 \quad \text { and } \quad \lambda_{1}=0 \text { if } x>2, \lambda_{2}=0 \text { if } y>3
$$

If $x>2$, then $\lambda_{1}=0$, and this gives $x=0$, a contradiction. If $y>3$, then $\lambda_{2}=0$, and this gives $y=0$, a contradiction. The only solution to the Kuhn-Tucker conditions is therefore $x=2, y=3, \lambda_{1}=4$ and $\lambda_{2}=6$. This point is the maximum since $\mathscr{L}(x, y ; 4,6)=1-x^{2}-y^{2}+4 x+6 y$ is concave.
3 We first write the problem in standard form as

$$
\max -4 \ln \left(x^{2}+2\right)-y^{2} \quad \text { subject to } \quad\left\{\begin{array}{l}
-x^{2}-y \leq-2 \\
-x \leq-1
\end{array}\right.
$$

The Lagrangian is $\mathscr{L}(x, y, z, \lambda)=-4 \ln \left(x^{2}+2\right)-y^{2}+\lambda_{1}\left(x^{2}+y\right)+\lambda_{2} x$, and we write down and solve the Kuhn-Tucker conditions: The first order conditions

$$
\begin{aligned}
& \mathscr{L}_{x}^{\prime}=\frac{-8 x}{x^{2}+2}+\lambda_{1} \cdot 2 x+\lambda_{2}=0 \\
& \mathscr{L}_{y}^{\prime}=-2 y+\lambda_{1}=0
\end{aligned}
$$

together with the constraints $x^{2}+y \geq 2$ and $x \geq 1$ and the complementary slackness conditions

$$
\lambda_{1}, \lambda_{2} \geq 0 \quad \text { and } \quad \lambda_{1}=0 \text { if } x^{2}+y>2, \lambda_{2}=0 \text { if } x>1
$$

Since there are two constrains, there are four cases to consider. Case 1 is given by $x^{2}+y=2, x=1$. This gives $x=1$ and $y=1$, and by the first order conditions that $\lambda_{1}=2$ and $\lambda_{2}=8 / 3-4<0$. This contradicts the complementary slackness condition, and there are no solutions in this case. Case 2 is the case $x^{2}+y=2$ and $x>1$. In this case, $\lambda_{2}=0$ and $y=2-x^{2}$. The first order conditons give $\lambda_{1}=2 y$ and $-8 x /\left(x^{2}+2\right)+4 x y=0$. Inserting $y=2-x^{2}$ into the last equation we get

$$
x\left(4\left(2-x^{2}\right)-\frac{8}{x^{2}+2}\right)=x \cdot \frac{4\left(2-x^{2}\right)\left(2+x^{2}\right)-8}{x^{2}+2}=0
$$

Since $x>1$, this implies that $4\left(4-x^{4}\right)=8$ or $x^{4}=2$, and this gives $x=\sqrt[4]{2}$ and $y=2-\sqrt{2}$, with $\lambda_{1}=2(2-\sqrt{2})$ and $\lambda_{2}=0$. Since $x>1$ and $\lambda_{1} \geq 0$, this gives the solution

$$
\left(x, y ; \lambda_{1}, \lambda_{2}\right)=(\sqrt[4]{2}, 2 \sqrt{2} ; 2(2-\sqrt{2}), 0)
$$

of the Kuhn-Tucker conditions in Case 2. Case 3 is the case $x^{2}+y>2$ and $x=1$. This gives $\lambda_{1}=0$ by the complementary slackness conditons, and then $y=0$ by the first order conditions. But then $x^{2}+y=1$, and this contradicts $x^{2}+y>2$. Case 4 is the case $x^{2}+y>2$ and $x>1$. This gives $\lambda_{1}=\lambda_{2}=0$ by the complementary slackness conditions, this gives $x=y=0$ by the first order conditions. Again, this contradicts the constraint $x^{2}+y>2$. We conclude that there is only one solution to the Kuhn-Tucker conditions. We have assumed that the problem has a solution. It follows that this solution must occur at the point $(x, y)=(\sqrt[4]{2}, 2-\sqrt{2})$ or at an admissible point where the NDCQ is not satisfied. In case 1 , we see that NDCQ is given by

$$
\operatorname{rk}\left(\begin{array}{cc}
-2 x & -1 \\
-1 & 0
\end{array}\right)=2
$$

Since the determinant is -1 , the rank is two at all points, and NDCQ holds. Similarly, we see that in case 2 and case 3 that NDCQ holds, since each row contains an entry that cannot be zero. In case 4 , there is no NDCQ. We can therefore conclude that $\left(x^{*}, y^{*}\right)=(\sqrt[4]{2}, 2-\sqrt{2})$ is the minimum.

4 Mock Final Exam in GRA6035 12/2010, Problem 4

See handwritten solution on the course page of GRA 6035 Mathematics 2010/11.

5 Final Exam in GRA6035 10/12/2010, Problem 4

The Hessian of f is indefinite for all $(x, y, z) \neq(0,0,0)$ since it is given by

$$
f^{\prime \prime}=\left(\begin{array}{lll}
0 & z & y \\
z & 0 & x \\
y & x & 0
\end{array}\right)
$$

and has principal minors $-z^{2},-y^{2},-x^{2}$ of order two. Hence f is neither convex nor concave. We compute the Hessian of g, and find

$$
g^{\prime \prime}=\frac{1}{x y z}\left(\begin{array}{ccc}
\frac{2}{x^{2}} & \frac{1}{x y} & \frac{1}{x z} \\
\frac{1}{x y} & \frac{2}{y^{2}} & \frac{1}{y z} \\
\frac{1}{x z} & \frac{1}{y z} & \frac{2}{z^{2}}
\end{array}\right)
$$

Hence the leading principal minors are

$$
D_{1}=\frac{1}{x y z} \frac{2}{x^{2}}>0, \quad D_{2}=\frac{1}{(x y z)^{2}} \frac{3}{(x y)^{2}}>0, \quad D_{3}=\frac{1}{(x y z)^{3}} \frac{4}{(x y z)^{2}}>0
$$

This means that g is convex.
The set $\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$ is closed and bounded, so the problem has solutions by the extreme value theorem. The NDCQ is satisfied, since the rank of
$(2 x 2 y 2 z)=1$ when $x^{2}+y^{2}+z^{2}=1$. We form the Lagrangian

$$
\mathscr{L}=x y z-\lambda\left(x^{2}+y^{2}+z^{2}-1\right)
$$

and solve the Kuhn-Tucker conditions, consisting of the first order conditions

$$
\begin{aligned}
\mathscr{L}_{x}^{\prime} & =y z-\lambda \cdot 2 x
\end{aligned}=001 \text { L्}
$$

together with one of the following conditions: i) $x^{2}+y^{2}+z^{2}=1$ and $\lambda \geq 0$ or ii) $x^{2}+y^{2}+z^{2}<1$ and $\lambda=0$. We first solve the equations/inequalities in case i): If $x=0$, then we see that $y=0$ or $z=0$ from the first equation, and we get the solutions $(x, y, z ; \boldsymbol{\lambda})=(0,0, \pm 1 ; 0),(0, \pm 1,0 ; 0)$. If $x \neq 0$, we get $2 \lambda=y z / x$ and the remaining first order conditions give $\left(x^{2}-y^{2}\right) z=0$ and $\left(x^{2}-z^{2}\right) y=0$. If $y=0$, we get the solution $(\pm 1,0,0 ; 0)$. Otherwise, we get $x^{2}=y^{2}=z^{2}$, hence

$$
(x, y, z ; \lambda)=\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}} ; \pm \frac{1}{2 \sqrt{3}}\right)
$$

The condition that $\lambda \geq 0$ give that either all three coordinates (x, y, z) are positive, or that one is positive and two are negative. In total, we obtain four different solutions. We note that $f(x, y, z)=\frac{1}{3 \sqrt{3}}$ for each of these four solutions, while $f(x, y, z)=0$ for either of the first three solutions. Finally, we consider case ii), where $\lambda=0$. This gives $x y=x z=y z=0$, and we obtain

$$
(x, y, z ; \lambda)=(a, 0,0 ; 0),(0, a, 0 ; 0),(0,0, a ; 0)
$$

The condition that $x^{2}+y^{2}+z^{2}<1$ give $a^{2} \leq 1$ or $a \in(-1,1)$. For all these solutions, we get $f(x, y, z)=0$. We can therefore conclude that the solution to the optimization problem is $\left(x^{*}, y^{*}, z^{*}\right)=(\pm 1 / \sqrt{3}, \pm 1 / \sqrt{3}, \pm 1 / \sqrt{3})$ with an even number of variables with negative values. The maximum value is $f=\frac{1}{3 \sqrt{3}}$.
6 Final Exam in GRA6035 30/05/2011, Problem 4
a) We compute the Hessian of f, and find

$$
f^{\prime \prime}=e^{x+y}\left(\begin{array}{cc}
(x+2) y & (x+1)(y+1) \\
(x+1)(y+1) & x(y+2)
\end{array}\right)
$$

The principal minors are

$$
\Delta_{1}=e^{x+y}(x+2) y, \Delta_{1}=e^{x+y} x(y+2), \quad D_{2}=\left(e^{x+y}\right)^{2}\left(1-(x+1)^{2}-(y+1)^{2}\right)
$$

Since $(x+1)^{2}+(y+1)^{2} \leq 1, D_{f}$ is a ball with center in $(-1,-1)$ and radius $r=1$, and it follows that $x, y<0$ and $x+2, y+2 \geq 0$, and therefore $\Delta_{1} \leq 0$ and $D_{2} \geq 0$. This means that f is concave, but not convex.
b) Since D_{f} is closed and bounded, f has maximum and minimum values. We compute the stationary points of f : We have

$$
f_{x}^{\prime}=(x+1) y e^{x+y}=0, \quad f_{y}^{\prime}=x(y+1) e^{x+y}=0
$$

and $(x, y)=(0,0)$ and $(x, y)=(-1,-1)$ are the solutions. Hence there is only one stationary point $(x, y)=(-1,-1)$ in D_{f}, and the $f(-1,-1)=\mathbf{e}^{-2}$ is the maximum value of f since f is concave. The minimum value most occur for (x, y) on the boundary of D_{f}. We see that $f(x, y) \geq 0$ for all $(x, y) \in D_{f}$ while $f(-1,0)=f(0,-1)=0$. Hence $\mathbf{f}(-\mathbf{1}, \mathbf{0})=\mathbf{f}(\mathbf{0},-\mathbf{1})=\mathbf{0}$ is the minimum value of f.

