Problem Sheet 9 with Solutions GRA 6035 Mathematics

BI Norwegian Business School

Problems

1. Solve the optimization problem

$$\max f(x,y) = x^2 + y^2 + y - 1$$
 subject to $x^2 + y^2 \le 1$

What is the maximum value?

2. Solve $\max(1 - x^2 - y^2)$ subject to $x \ge 2$ and $y \ge 3$ by a direct argument and then see what the Kuhn-Tucker conditions have to say about the problem.

3. Solve the following problem (assuming it has a solution):

min
$$4\ln(x^2+2) + y^2$$
 subject to
$$\begin{cases} x^2+y \ge 2\\ x \ge 1 \end{cases}$$

4. Mock Final Exam in GRA6035 12/2010, 4

We consider the following optimization problem: Maximize f(x, y, z) = xy + yz - xzsubject to the constraint $x^2 + y^2 + z^2 \le 1$.

- a) Write down the first order conditions for this problem, and solve the first order conditions for *x*, *y*, *z* using matrix methods.
- b) Solve the optimization problem. Make sure that you check the non-degenerate constraint qualification, and also make sure that you show that the problem has a solution.

5. Final Exam in GRA6035 10/12/2010, 4

We consider the function f(x, y, z) = xyz.

a) The function g is defined on the set $D = \{(x, y, z) : x > 0, y > 0, z > 0\}$, and it is given by

$$g(x, y, z) = \frac{1}{f(x, y, z)} = \frac{1}{xyz}$$

Is g a convex or concave function on D?

b) Maximize f(x, y, z) subject to $x^2 + y^2 + z^2 \le 1$.

6. Final Exam in GRA6035 30/05/2011, Problem 4

We consider the function f, given by $f(x,y) = xy e^{x+y}$, with domain of definition $D_f = \{(x,y) : (x+1)^2 + (y+1)^2 \le 1\}.$

a) Compute the Hessian of *f*. Is *f* a convex function? Is *f* a concave function?b) Find the maximum and minimum values of *f*.

2

Solutions

1 The Lagrangian is $\mathscr{L}(x, y, z, \lambda) = x^2 + y^2 + y - 1 - \lambda(x^2 + y^2)$, and we write down and solve the Kuhn-Tucker conditions: The first order conditions

$$\mathcal{L}'_{x} = 2x - \lambda \cdot 2x = 0$$
$$\mathcal{L}'_{y} = 2y + 1 - \lambda \cdot 2y = 0$$

together with the constraint $x^2 + y^2 \le 1$ and the complementary slackness conditions

$$\lambda \ge 0$$
 and $\lambda = 0$ if $x^2 + y^2 < 1$

From the first of the first order conditions, we see that x = 0 or $\lambda = 1$. Since $\lambda = 1$ contradicts the second of the first order conditions, we see that x = 0. From the second of the first order conditions we have

$$2y(\lambda - 1) = 1 \quad \Rightarrow \quad y = \frac{1}{2(\lambda - 1)}$$

This implies that

$$x^2 + y^2 = \frac{1}{4(\lambda - 1)^2} \le 1$$

We first consider the case $x^2 + y^2 = 1$. In this case, we have $1 = 4(\lambda - 1)^2$, or that $\lambda = \pm 1/2 + 1$. Both solutions satisfy $\lambda \ge 0$, and this gives two solution

$$(x,y;\lambda) = (0,1;\frac{3}{2}), (0,-1;\frac{1}{2})$$

of the Kuhn-Tucker conditions in case $x^2 + y^2 = 1$. Secondly, we consider the case when $x^2 + y^2 < 1$, which gives $\lambda = 0$ by the complementary slackness condition. Since $x^2 + y^2 = 1/4 < 1$, this gives the solution

$$(x,y;\lambda) = (0,-\frac{1}{2};0)$$

of the Kuhn-Tucker conditions in case $x^2 + y^2 < 1$. The solutions of the Kuhn-Tucker conditions give f(0,1) = 1, f(0,-1) = -1 and f(0,-1/2) = -5/4, so the solution $(x^*, y^*; \lambda^*) = (0,1;3/2)$ is the best candidate for maximum. The Lagrangian $\mathscr{L}(x,y;\lambda^*) = -x^2/2 - y^2/2 + y - 1$ is clearly concave, so $(x^*, y^*) = (0,1)$ is the maximum point, with maximal value $f^* = f(x^*, y^*) = 1$.

2 We see that $f(x,y) = 1 - x^2 - y^2$ will decrease as *x* increases and as *y* increases, since *x* and *y* are positive. Therefore the maximum will occur at x = 2, y = 3, which are the smallest possible values of *x* and *y*, and the maximum value is

$$f(2,3) = 1 - 4 - 9 = -12$$

To write down the Kuhn-Tucker conditions, we write the problem in standard form

$$\max 1 - x^2 - y^2 \quad \text{subject to} \quad \begin{cases} -x \le -2\\ -y \le -3 \end{cases}$$

The Lagrangian is $\mathscr{L}(x, y, z, \lambda) = 1 - x^2 - y^2 + \lambda_1 x + \lambda_2 y$, and we write down and solve the Kuhn-Tucker conditions: The first order conditions

$$egin{aligned} &\mathcal{L}_x' = -2x + \lambda_1 = 0 \ &\mathcal{L}_y' = -2y + \lambda_2 = 0 \end{aligned}$$

together with the constraints $x \ge 2$ and $y \ge 3$ and the complementary slackness conditions

$$\lambda_1, \lambda_2 \ge 0$$
 and $\lambda_1 = 0$ if $x > 2, \lambda_2 = 0$ if $y > 3$

If x > 2, then $\lambda_1 = 0$, and this gives x = 0, a contradiction. If y > 3, then $\lambda_2 = 0$, and this gives y = 0, a contradiction. The only solution to the Kuhn-Tucker conditions is therefore x = 2, y = 3, $\lambda_1 = 4$ and $\lambda_2 = 6$. This point is the maximum since $\mathscr{L}(x,y;4,6) = 1 - x^2 - y^2 + 4x + 6y$ is concave.

3 We first write the problem in standard form as

max
$$-4\ln(x^2+2) - y^2$$
 subject to
$$\begin{cases} -x^2 - y \le -2\\ -x \le -1 \end{cases}$$

The Lagrangian is $\mathscr{L}(x, y, z, \lambda) = -4\ln(x^2+2) - y^2 + \lambda_1(x^2+y) + \lambda_2 x$, and we write down and solve the Kuhn-Tucker conditions: The first order conditions

$$\begin{aligned} \mathscr{L}'_x &= \frac{-8x}{x^2 + 2} + \lambda_1 \cdot 2x + \lambda_2 = 0\\ \mathscr{L}'_y &= -2y + \lambda_1 = 0 \end{aligned}$$

together with the constraints $x^2 + y \ge 2$ and $x \ge 1$ and the complementary slackness conditions

$$\lambda_1, \lambda_2 \ge 0$$
 and $\lambda_1 = 0$ if $x^2 + y > 2, \lambda_2 = 0$ if $x > 1$

Since there are two constrains, there are four cases to consider. Case 1 is given by $x^2 + y = 2$, x = 1. This gives x = 1 and y = 1, and by the first order conditions that $\lambda_1 = 2$ and $\lambda_2 = 8/3 - 4 < 0$. This contradicts the complementary slackness condition, and there are no solutions in this case. Case 2 is the case $x^2 + y = 2$ and x > 1. In this case, $\lambda_2 = 0$ and $y = 2 - x^2$. The first order conditions give $\lambda_1 = 2y$ and $-8x/(x^2 + 2) + 4xy = 0$. Inserting $y = 2 - x^2$ into the last equation we get

$$x\left(4(2-x^2) - \frac{8}{x^2+2}\right) = x \cdot \frac{4(2-x^2)(2+x^2) - 8}{x^2+2} = 0$$

Since x > 1, this implies that $4(4 - x^4) = 8$ or $x^4 = 2$, and this gives $x = \sqrt[4]{2}$ and $y = 2 - \sqrt{2}$, with $\lambda_1 = 2(2 - \sqrt{2})$ and $\lambda_2 = 0$. Since x > 1 and $\lambda_1 \ge 0$, this gives the solution

$$(x, y; \lambda_1, \lambda_2) = (\sqrt[4]{2}, 2\sqrt{2}; 2(2 - \sqrt{2}), 0)$$

of the Kuhn-Tucker conditions in Case 2. Case 3 is the case $x^2 + y > 2$ and x = 1. This gives $\lambda_1 = 0$ by the complementary slackness conditons, and then y = 0 by the first order conditions. But then $x^2 + y = 1$, and this contradicts $x^2 + y > 2$. Case 4 is the case $x^2 + y > 2$ and x > 1. This gives $\lambda_1 = \lambda_2 = 0$ by the complementary slackness conditions, this gives x = y = 0 by the first order conditions. Again, this contradicts the constraint $x^2 + y > 2$. We conclude that there is only one solution to the Kuhn-Tucker conditions. We have assumed that the problem has a solution. It follows that this solution must occur at the point $(x, y) = (\sqrt[4]{2}, 2 - \sqrt{2})$ or at an admissible point where the NDCQ is not satisfied. In case 1, we see that NDCQ is given by

$$\operatorname{rk}\begin{pmatrix} -2x - 1\\ -1 & 0 \end{pmatrix} = 2$$

Since the determinant is -1, the rank is two at all points, and NDCQ holds. Similarly, we see that in case 2 and case 3 that NDCQ holds, since each row contains an entry that cannot be zero. In case 4, there is no NDCQ. We can therefore conclude that $(x^*, y^*) = (\sqrt[4]{2}, 2 - \sqrt{2})$ is the minimum.

4 Mock Final Exam in GRA6035 12/2010, Problem 4

See handwritten solution on the course page of GRA 6035 Mathematics 2010/11.

5 Final Exam in GRA6035 10/12/2010, Problem 4

The Hessian of *f* is indefinite for all $(x, y, z) \neq (0, 0, 0)$ since it is given by

$$f'' = \begin{pmatrix} 0 \ z \ y \\ z \ 0 \ x \\ y \ x \ 0 \end{pmatrix}$$

and has principal minors $-z^2$, $-y^2$, $-x^2$ of order two. Hence f is neither convex nor concave. We compute the Hessian of g, and find

$$g'' = \frac{1}{xyz} \begin{pmatrix} \frac{2}{x^2} & \frac{1}{xy} & \frac{1}{xz} \\ \frac{1}{xy} & \frac{2}{y^2} & \frac{1}{yz} \\ \frac{1}{xz} & \frac{1}{yz} & \frac{2}{z^2} \end{pmatrix}$$

Hence the leading principal minors are

$$D_1 = \frac{1}{xyz}\frac{2}{x^2} > 0, \quad D_2 = \frac{1}{(xyz)^2}\frac{3}{(xy)^2} > 0, \quad D_3 = \frac{1}{(xyz)^3}\frac{4}{(xyz)^2} > 0$$

This means that g is convex.

The set $\{(x, y, z) : x^2 + y^2 + z^2 \le 1\}$ is closed and bounded, so the problem has solutions by the extreme value theorem. The NDCQ is satisfied, since the rank of

 $(2x \ 2y \ 2z) = 1$ when $x^2 + y^2 + z^2 = 1$. We form the Lagrangian

$$\mathscr{L} = xyz - \lambda \left(x^2 + y^2 + z^2 - 1 \right)$$

and solve the Kuhn-Tucker conditions, consisting of the first order conditions

$$\begin{aligned} \mathcal{L}'_{x} &= yz - \lambda \cdot 2x = 0\\ \mathcal{L}'_{y} &= xz - \lambda \cdot 2y = 0\\ \mathcal{L}'_{z} &= xy - \lambda \cdot 2z = 0 \end{aligned}$$

together with one of the following conditions: i) $x^2 + y^2 + z^2 = 1$ and $\lambda \ge 0$ or ii) $x^2 + y^2 + z^2 < 1$ and $\lambda = 0$. We first solve the equations/inequalities in case i): If x = 0, then we see that y = 0 or z = 0 from the first equation, and we get the solutions $(x, y, z; \lambda) = (0, 0, \pm 1; 0), (0, \pm 1, 0; 0)$. If $x \ne 0$, we get $2\lambda = yz/x$ and the remaining first order conditions give $(x^2 - y^2)z = 0$ and $(x^2 - z^2)y = 0$. If y = 0, we get the solution $(\pm 1, 0, 0; 0)$. Otherwise, we get $x^2 = y^2 = z^2$, hence

$$(x, y, z; \lambda) = \left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}; \pm \frac{1}{2\sqrt{3}}\right)$$

The condition that $\lambda \ge 0$ give that either all three coordinates (x, y, z) are positive, or that one is positive and two are negative. In total, we obtain four different solutions. We note that $f(x, y, z) = \frac{1}{3\sqrt{3}}$ for each of these four solutions, while f(x, y, z) = 0 for either of the first three solutions. Finally, we consider case ii), where $\lambda = 0$. This gives xy = xz = yz = 0, and we obtain

$$(x, y, z; \lambda) = (a, 0, 0; 0), (0, a, 0; 0), (0, 0, a; 0)$$

The condition that $x^2 + y^2 + z^2 < 1$ give $a^2 \le 1$ or $a \in (-1, 1)$. For all these solutions, we get f(x, y, z) = 0. We can therefore conclude that the solution to the optimization problem is $(x^*, y^*, z^*) = (\pm 1/\sqrt{3}, \pm 1/\sqrt{3}, \pm 1/\sqrt{3})$ with an even number of variables with negative values. The maximum value is $f = \frac{1}{3\sqrt{3}}$.

6 Final Exam in GRA6035 30/05/2011, Problem 4

a) We compute the Hessian of f, and find

$$f'' = e^{x+y} \begin{pmatrix} (x+2)y & (x+1)(y+1) \\ (x+1)(y+1) & x(y+2) \end{pmatrix}$$

The principal minors are

$$\Delta_1 = e^{x+y}(x+2)y, \ \Delta_1 = e^{x+y}x(y+2), \quad D_2 = (e^{x+y})^2(1-(x+1)^2-(y+1)^2)$$

Since $(x+1)^2 + (y+1)^2 \le 1$, D_f is a ball with center in (-1,-1) and radius r = 1, and it follows that x, y < 0 and $x+2, y+2 \ge 0$, and therefore $\Delta_1 \le 0$ and $D_2 \ge 0$. This means that f is concave, but not convex.

b) Since D_f is closed and bounded, f has maximum and minimum values. We compute the stationary points of f: We have

$$f'_x = (x+1)ye^{x+y} = 0, \quad f'_y = x(y+1)e^{x+y} = 0$$

and (x,y) = (0,0) and (x,y) = (-1,-1) are the solutions. Hence there is only one stationary point (x,y) = (-1,-1) in D_f , and the $f(-1,-1) = e^{-2}$ is the maximum value of f since f is concave. The minimum value most occur for (x,y) on the boundary of D_f . We see that $f(x,y) \ge 0$ for all $(x,y) \in D_f$ while f(-1,0) = f(0,-1) = 0. Hence $\mathbf{f}(-1,0) = \mathbf{f}(0,-1) = \mathbf{0}$ is the minimum value of f.