Problem Sheet 6 with Solutions GRA 6035 Mathematics

Problems

1. Consider the four sets in [FMEA] Section 2.2 Problem 1, and determine which sets are convex.
2. Sketch each set and determine if it is open, closed, bounded or convex:
a) $\left\{(x, y): x^{2}+y^{2}<2\right\}$
b) $\left\{(x, y): x^{2}+y^{2}>8\right\}$
c) $\{(x, y): x y \leq 1\}$
d) $\{(x, y): x \geq 0, y \geq 0\}$
e) $\{(x, y): x \geq 0, y \geq 0, x y \geq 1\}$
f) $\{(x, y): \sqrt{x}+\sqrt{y} \leq 2\}$
3. Consider the functions in [FMEA] Section 2.3 Problem 1, and determine which functions are convex and concave.
4. Compute the Hessian of the function $f(x, y)=x-y-x^{2}$, and show that f is a concave function defined on $D_{f}=\mathbb{R}^{2}$. Determine if

$$
g(x, y)=e^{x-y-x^{2}}
$$

is a convex or a concave function on \mathbb{R}^{2}.
5. Let $f(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+f$ be the general polynomial in two variables of degree two. For which values of the parameters is this function (strictly) convex and (strictly) concave?
6. Determine the values of the parameter a for which the function

$$
f(x, y)=-6 x^{2}+(2 a+4) x y-y^{2}+4 a y
$$

is convex and concave on \mathbb{R}^{2}.
7. The function $f(x, y, z)=\ln (x y z)$ is defined on $D_{f}=\{(x, y, z): x>0, y>0, z>0\}$. Determine if this function is convex or concave.
8. Consider the function $f(x, y)=x^{4}+16 y^{4}+32 x y^{3}+8 x^{3} y+24 x^{2} y^{2}$ defined on \mathbb{R}^{2}. Determine if this function is convex or concave.
9. Consider the function $f(x, y)=e^{x+y}+e^{x-y}$ defined on \mathbb{R}^{2}. Determine if this function is convex or concave.

10. Midterm in GRA6035 24/09/2010, Problem 7

Consider the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}+x_{3}^{2}+x_{1}-x_{2}
$$

defined on \mathbb{R}^{3}. Which statement is true?
a) f is a convex function but not a concave function
b) f is a convex function and a concave function
c) f is not a convex function but a concave function
d) f is neither a convex nor a concave function
e) I prefer not to answer.

11. Mock Midterm in GRA6035 09/2010, Problem 7

Consider the function

$$
f\left(x_{1}, x_{2}\right)=3-a \cdot Q\left(x_{1}, x_{2}\right)
$$

defined on \mathbb{R}^{2}, where $a \in \mathbb{R}$ is a number and Q is a positive definite quadratic form. Which statement is true?
a) f is convex for all values of a
b) f is concave for all values of a
c) f is convex if $a \geq 0$ and concave if $a \leq 0$
d) f is convex if $a \leq 0$ and concave if $a \geq 0$
e) I prefer not to answer.

12. Midterm in GRA6035 24/05/2011, Problem 7

Consider the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=-x_{1}^{2}+2 x_{1} x_{2}-3 x_{2}^{2}-x_{3}^{2}-x_{1}-x_{3}
$$

defined on \mathbb{R}^{3}. Which statement is true?
a) f is a convex function but not a concave function
b) f is a convex function and a concave function
c) f is not a convex function but a concave function
d) f is neither a convex nor a concave function
e) I prefer not to answer.

Solutions

1 The sets in a) and d) are convex, while the sets in b) and c) are not.
2 We see that the sets have the following type:
a) The set $\left\{(x, y): x^{2}+y^{2}<2\right\}$ is convex, open and bounded, but not closed.
b) The set $\left\{(x, y): x^{2}+y^{2}>8\right\}$ is open, but not closed, bounded or convex.
c) The set $\{(x, y): x y \leq 1\}$ is closed, but not open, bounded or convex.
d) The set $\{(x, y): x \geq 0, y \geq 0\}$ is closed and convex, but not open or bounded.
e) The set $\{(x, y): x \geq 0, y \geq 0, x y \geq 1\}$ is closed and convex, but not open or bounded.
f) The set $\{(x, y): \sqrt{x}+\sqrt{y} \leq 2\}$ is closed and bounded, but not open or convex.

3 The function in a) is convex, the functions in b) and c) are concave.
4 The Hessian of the function $f(x, y)=x-y-x^{2}$ is given by

$$
H(f)=\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right)
$$

since $f_{x}^{\prime}=1-2 x$ and $f_{y}^{\prime}=-1$. Since $\Delta_{1}=-2,0 \leq 0$ and $\Delta_{2}=0 \geq 0$, the function f is concave on $D_{f}=\mathbb{R}^{2}$. The Hessian of the function $g(x, y)=e^{x-y-x^{2}}$ is given by

$$
H(g)=\left(\begin{array}{cc}
e^{x-y-x^{2}}(1-2 x)^{2}+e^{x-y-x^{2}}(-2) & e^{x-y-x^{2}}(-1)(1-2 x) \\
e^{x-y-x^{2}}(-1)(1-2 x) & e^{x-y-x^{2}}(-1)(-1)
\end{array}\right)
$$

by the product rule, since $g_{x}^{\prime}=e^{x-y-x^{2}}(1-2 x)$ and $g_{y}^{\prime}=e^{x-y-x^{2}}(-1)$. This gives

$$
H(g)=e^{x-y-x^{2}}\left(\begin{array}{cc}
4 x^{2}-4 x-1 & 2 x-1 \\
2 x-1 & 1
\end{array}\right)
$$

This gives $D_{2}=\left(e^{x-y-x^{2}}\right)^{2}\left(4 x^{2}-4 x-1-(2 x-1)^{2}\right)=-2\left(e^{x-y-x^{2}}\right)^{2}<0$, and this means that g is neither convex nor concave.

5 The Hessian matrix of the function $f(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+f$ is given by

$$
H(f)=\left(\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right)
$$

This means that $D_{1}=2 a$ and $D_{2}=4 a c-b^{2}$. Therefore, f is strictly convex if and only if $a>0$ and $4 a c-b^{2}>0$, and f is strictly concave if and only if $a<0$ and $4 a c-b^{2}>0$. The remaining principal minors are $\Delta_{1}=2 c$, and this means that f is convex if and only if $a \geq 0, c \geq 0,4 a c-b^{2} \geq 0$, and that f is concave if and only if $a \leq 0, c \leq 0,4 a c-b^{2} \geq 0$.
6 The Hessian matrix of the function $f(x, y)=-6 x^{2}+(2 a+4) x y-y^{2}+4 a y$ is given by

$$
H(f)=\left(\begin{array}{cc}
-12 & 2 a+4 \\
2 a+4 & -2
\end{array}\right)
$$

Hence the leading principal minors are $D_{1}=-12$ and $D_{2}=24-(2 a+4)^{2}=-4 a^{2}-$ $16 a+8$, and the remaining principal minor is $\Delta_{1}=-2$. We have that

$$
-4 a^{2}-16 a+8=-4\left(a^{2}+4 a-2\right) \geq 0 \quad \Leftrightarrow \quad-2-\sqrt{6} \leq a \leq-2+\sqrt{6}
$$

This implies that f is concave if and only if $-2-\sqrt{6} \leq a \leq-2+\sqrt{6}$, and that f is never convex.

7 Since $f_{x}^{\prime}=y z / x y z=1 / x$, we have $f_{y}^{\prime}=1 / y$ and $f_{z}^{\prime}=1 / z$ in the same way (or by the remark $\ln (x y z)=\ln (x)+\ln (y)+\ln (z))$. The Hessian becomes

$$
H(f)=\left(\begin{array}{ccc}
-1 / x^{2} & 0 & 0 \\
0 & -1 / y^{2} & 0 \\
0 & 0 & -1 / z^{2}
\end{array}\right)
$$

This matrix has $D_{1}=-1 / x^{2}<0, D_{2}=1 /\left(x^{2} y^{2}\right)>0, D_{3}=-1 /\left(x^{2} y^{2} z^{2}\right)<0$ on $D_{f}=\{(x, y, z): x>0, y>0, z>0\}$, hence f is concave.
8 Since $f_{x}^{\prime}=4 x^{3}+32 y^{3}+24 x^{2} y+48 x y^{2}$ and $f_{y}^{\prime}=64 y^{3}+96 x y^{2}+8 x^{3}+48 x^{2} y$, we have

$$
H(f)=\left(\begin{array}{ll}
12 x^{2}+48 x y+48 y^{2} & 96 y^{2}+24 x^{2}+96 x y \\
96 y^{2}+24 x^{2}+96 x y & 192 y^{2}+192 x y+48 x^{2}
\end{array}\right)
$$

Completing the squares, we see that

$$
H(f)=\left(\begin{array}{ll}
12(x+2 y)^{2} & 24(x+2 y)^{2} \\
24(x+2 y)^{2} & 48(x+2 y)^{2}
\end{array}\right)=12(x+2 y)^{2}\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

This gives $\Delta_{1}=12(x+2 y)^{2}, 48(x+2 y)^{2} \geq 0$ and $\Delta_{2}=144(x+2 y)^{4}(4-4)=0$. This implies that f is convex.
0 We have $f_{x}^{\prime}=e^{x+y}+e^{x-y}$ and $f_{y}^{\prime}=e^{x+y}-e^{x-y}$, and the Hessian is given by

$$
H(f)=\left(\begin{array}{ll}
e^{x+y}+e^{x-y} & e^{x+y}-e^{x-y} \\
e^{x+y}-e^{x-y} & e^{x+y}+e^{x-y}
\end{array}\right)
$$

This implies that $D_{1}=e^{x+y}+e^{x-y}>0$ and that we have

$$
D_{2}=\left(e^{x+y}+e^{x-y}\right)^{2}-\left(e^{x+y}+e^{x-y}\right)^{2}=4 e^{x+y} e^{x-y}=4 e^{2 x}>0
$$

Hence the function f is convex.

10 Midterm in GRA6035 24/09/2010, Problem 7

The function f is a sum of a linear function and a quadratic form with symmetric matrix

$$
A=\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Since A has eigenvalues $\lambda=1,2,4$, the quadratic form is positive definite and therefore convex (but not concave). Hence the correct answer is alternative \mathbf{A}.

11 Mock Midterm in GRA6035 09/2010, Problem 7

The function f is a sum of a constant function and the quadratic form $-a Q\left(x_{1}, x_{2}\right)$. Since Q is positive definite, it is convex, and $-Q$ is concave. If $a \geq 0$, then $-a Q\left(x_{1}, x_{2}\right)=a\left(-Q\left(x_{1}, x_{2}\right)\right)$ is concave. If $a \leq 0$, then $-a \geq 0$ and $-a Q\left(x_{1}, x_{2}\right)$ is convex. The correct answer is alternative \mathbf{D}.

12 Midterm in GRA6035 24/05/2011, Problem 7

The function f is a sum of a linear function and a quadratic form with symmetric matrix

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -3 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Since A has eigenvalues $\lambda=-2 \pm \sqrt{2}$ and $\lambda=-1$, the quadratic form is negative definite and therefore concave (but not convex). Hence the correct answer is alternative \mathbf{C}.

