Problem Sheet 5 with Solutions GRA 6035 Mathematics

Problems

1. Find the symmetric matrix of the following quadratic forms:
a) $Q(x, y)=x^{2}+2 x y+y^{2}$
b) $Q(x, y)=a x^{2}+b x y+c y^{2}$
c) $Q(x, y, z)=3 x^{2}-2 x y+3 x z+2 y^{2}+3 z^{2}$
2. Find the symmetric matrix and determine the definiteness of the following quadratic forms:
a) $Q(\mathbf{x})=x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}$
b) $Q(\mathbf{x})=x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}+5 x_{3}^{2}$
3. Compute all leading principal minors and all principal minors of the following matrices:

$$
\text { a) } A=\left(\begin{array}{cc}
-3 & 4 \\
4 & -5
\end{array}\right) \quad \text { b) } \quad A=\left(\begin{array}{cc}
-3 & 4 \\
4 & -6
\end{array}\right)
$$

In each case, write down the corresponding quadratic form $Q(x, y)=\mathbf{x}^{T} A \mathbf{x}$, and determine its definiteness. Use this to classify the stationary point $(x, y)=(0,0)$ of the quadratic form.
4. Compute all leading principal minors and all principal minors of the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 5 \\
0 & 5 & 6
\end{array}\right)
$$

Write down the corresponding quadratic form $Q(x, y, z)=\mathbf{x}^{T} A \mathbf{x}$, and determine its definiteness. Use this to classify the stationary point $(x, y, z)=(0,0,0)$ of the quadratic form.
5. For which values of the parameters a, b, c is the symmetric matrix

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

positive (semi)definite and negative (semi)definite?
6. Determine the definiteness of the following constrained quadratic forms using bordered Hessians:
a) $Q(x, y)=x^{2}+2 x y-y^{2}$ subject to $x+y=0$
b) $Q(\mathbf{x})=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}+4 x_{1} x_{3}-2 x_{1} x_{2}$ subject to $x_{1}+x_{2}+x_{3}=0, x_{1}+x_{2}-x_{3}=0$
7. Determine the definiteness of the following constrained quadratic forms without using bordered Hessians:
a) $Q(x, y)=x^{2}+2 x y-y^{2}$ subject to $x+y=0$
b) $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}+4 x_{1} x_{3}-2 x_{1} x_{2}$ subject to $x_{1}+x_{2}+x_{3}=0$ and $x_{1}+$ $x_{2}-x_{3}=0$
8. Midterm in GRA6035 24/09/2010, Problem 6

Consider the quadratic form

$$
Q\left(x_{1}, x_{2}\right)=x_{1}^{2}-4 x_{1} x_{2}+4 x_{2}^{2}
$$

Which statement is true?

a) Q is positive semidefinite but not positive definite
b) Q is negative semidefinite but not negative definite
c) Q is indefinite
d) Q is positive definite
e) I prefer not to answer.

9. Mock Midterm in GRA6035 09/2010, Problem 6

Consider the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+6 x_{1} x_{2}+3 x_{2}^{2}+2 x_{3}^{2}
$$

Which statement is true?

a) f is not a quadratic form
b) f is a positive definite quadratic form
c) f is an indefinite quadratic form
d) f is a negative definite quadratic form
e) I prefer not to answer.

10. Midterm in GRA6035 24/05/2011, Problem 6

Consider the quadratic form

$$
Q\left(x_{1}, x_{2}\right)=-2 x_{1}^{2}+12 x_{1} x_{2}+2 x_{2}^{2}
$$

Which statement is true?

a) Q is positive semidefinite but not positive definite
b) Q is negative semidefinite but not negative definite
c) Q is indefinite
d) Q is positive definite
e) I prefer not to answer.

Solutions

1 The symmetric matrices are given by
a) $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
b) $A=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$
c) $A=\left(\begin{array}{ccc}3 & -1 & 3 / 2 \\ -1 & 2 & 0 \\ 3 / 2 & 0 & 3\end{array}\right)$

2 The symmetric matrices are given by
a) $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$
b) $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$

In a) the eigenvalues $\lambda=1,3,5$ are all positive, so the quadratic form Q and the matrix A are positive definite. In b), we compute the eigenvalues using the characteristic equation

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & 0 \\
1 & 3-\lambda & 0 \\
0 & 0 & 5-\lambda
\end{array}\right|=(5-\lambda)\left(\lambda^{2}-4 \lambda+2\right)=0
$$

and get $\lambda=5$ and $\lambda=2 \pm \sqrt{2}$. Since all eigenvalues are positive, the quadratic form Q and the matrix A are positive definite. Another way to determine the definiteness is to compute the leading principal minors $D_{1}=1, D_{2}=2$, and $D_{3}=10$.
3 In a) the leading principal minors are $D_{1}=-3$ and $D_{2}=-1$, and the principal minors are $\Delta_{1}=-3,-5$ and $\Delta_{2}=-1$. From the leading principal minors, we see that A is indefinite, and this means that $(x, y)=(0,0)$ is a saddle point for the quadratic form. In b) the leading principal minors are $D_{1}=-3$ and $D_{2}=2$, and the principal minors are $\Delta_{1}=-3,-6$ and $\Delta_{2}=2$. From the leading principal minors, we see that A is negative definite, and this means that $(x, y)=(0,0)$ is a global maximum for the quadratic form.
4 The leading principal minors and principal minors of the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 5 \\
0 & 5 & 6
\end{array}\right)
$$

are given by

$$
D_{1}=1, D_{2}=0, D_{3}=|A|=1(24-25)-2(12)=-25
$$

and

$$
\Delta_{1}=1,4,6, \Delta_{2}=0,6,-1, \Delta_{3}=-25
$$

The quadratic form of A is given by $Q(x, y, z)=x^{2}+4 x y+4 y^{2}+10 y z+6 z^{2}$. Since there is a principal minor $\Delta_{2}=-1$ of order two that is negative, the quadratic form is indefinite, and the stationary point $(x, y, z)=(0,0,0)$ is a saddle point.
5 The leading principal minors are given by $D_{1}=a, D_{2}=a c-b^{2}$ and the principal minors are given by $\Delta_{1}=a, c, \Delta_{2}=a c-b^{2}$. Hence we have that

$$
\begin{aligned}
\text { positive definite } & \Leftrightarrow a>0, a c-b^{2}>0 \\
\text { negative definite } & \Leftrightarrow a<0, a c-b^{2}>0 \\
\text { positive semidefinite } & \Leftrightarrow a \geq 0, c \geq 0, a c-b^{2} \geq 0 \\
\text { negative semidefinite } & \Leftrightarrow a \leq 0, c \leq 0, a c-b^{2} \geq 0
\end{aligned}
$$

6 In a) we have $n=2$ and $m=1$, so $n-m=1$. We consider the determinant of the bordered Hessian

$$
\left|\begin{array}{ccc}
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & -1
\end{array}\right|=-1(-2)+1(0)=2
$$

Since it has the same sign as $(-1)^{n}=(-1)^{2}=1$, we see that the constrained quadratic form is negative definite. In b) we have $n=3$ and $m=2$, so $n-m=1$. We consider the determinant of the bordered Hessian

$$
\left|\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & -1 \\
1 & 1 & 1 & -1 & 2 \\
1 & 1 & -1 & 1 & 0 \\
1 & -1 & 2 & 0 & -1
\end{array}\right|=\left|\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & -2 \\
1 & 1 & 1 & -1 & 2 \\
0 & 0 & -2 & 2 & -2 \\
0 & -2 & 1 & 1 & -3
\end{array}\right|=2\left|\begin{array}{cccc}
0 & 0 & 1 & 1 \\
1 & 1 & 1 & -1 \\
0 & 0 & -2 & 2 \\
0 & -2 & 1 & 1
\end{array}\right|=2(-1)(-2)(4)=16
$$

Since it has the same sign as $(-1)^{m}=(-1)^{2}=1$, we see that the constrained quadratic form is positive definite.

7 In a) we solve the constraint and get $y=-x$. Substitution in the quadratic form gives $Q(x, y)=x^{2}+2 x y-y^{2}=-2 x^{2}$, which is negative definite. Therefore, the constrained quadratic form in a) is negative definite. In b) we solve the constraint using Gaussian elimination and get one free variable x_{2} and solution $x_{1}=-x_{2}$ and $x_{3}=0$. Substitution in the quadratic form gives $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}+4 x_{1} x_{3}-$ $2 x_{1} x_{2}=4 x_{2}^{2}$, which is positive definite. Therefore, the constrained quadratic form in b) is positive definite.

8 Midterm in GRA6035 24/09/2010, Problem 6

The symmetric matrix associated with Q is

$$
A=\left(\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right)
$$

We compute its eigenvalues to be 0 and 5 . Hence the correct answer is alternative A. This question can also be answered using the fact that the principal minors are 1,4 (of order one) and 0 (of order two), or the fact that $Q\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2}\right)^{2}$.

9 Mock Midterm in GRA6035 09/2010, Problem 6

Since all terms of f have degree two, it is a quadratic form, and its symmetric matrix is

$$
A=\left(\begin{array}{lll}
1 & 3 & 0 \\
3 & 3 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

The characteristic equation of A is $\left(\lambda^{2}-4 \lambda-6\right)(2-\lambda)=0$, and the eigenvalues are $\lambda=2$ and $\lambda=2 \pm \sqrt{10}$. Hence the correct answer is alternative \mathbf{C}. This problem can also be solved using the principal leading minors, which are $D_{1}=1, D_{2}=-6$ and $D_{3}=-12$.

10 Midterm in GRA6035 24/05/2011, Problem 6
The symmetric matrix associated with Q is

$$
A=\left(\begin{array}{cc}
-2 & 6 \\
6 & 2
\end{array}\right)
$$

We compute its eigenvalues to be $\pm \sqrt{40}$. Hence the correct answer is alternative C. This problem can also be solved using the principal leading minors, which are $D_{1}=-2$ and $D_{2}=-40$.

