Problem Sheet 12 with Solutions GRA 6035 Mathematics

Problems

1. Find the general solutions
a) $\ddot{x}-x=e^{-t}$
b) $3 \ddot{x}-30 \dot{x}+75 x=2 t+1$
2. Solve
a) $\ddot{x}+2 \dot{x}+x=t^{2}, x(0)=0, \dot{x}(0)=1$
b) $\ddot{x}+4 x=4 t+1, x\left(\frac{\pi}{2}\right)=0, \dot{x}\left(\frac{\pi}{2}\right)=0$
3. Find the general solutions of the following equations for $t>0$:
a) $t^{2} \ddot{x}+5 t \dot{x}+3 x=0$
b) $t^{2} \ddot{x}-3 t \dot{x}+3 x=t^{2}$
4. Solve the differential equation $\ddot{x}+2 a \dot{x}-3 a^{2} x=100 e^{b t}$ for all values of the constants a and b.
5. Find the solution of the difference equation $x_{t+1}=2 x_{t}+4$ with $x_{0}=1$.
6. Find the solution of the difference equation $w_{t+1}=(1+r) w_{t}+y_{t+1}-c_{t+1}$ when $r=0.2, w_{0}=1000, y_{t}=100$ and $c_{t}=50$.
7. Prove by direct substitution that the following sequences in t are solutions of the associated difference equations when A, B are constants:
a) $x_{t}=A+B \cdot 2^{t}$ is a solution of $x_{t+2}-3 x_{t+1}+2 x_{t}=0$
b) $x_{t}=A \cdot 3^{t}+B \cdot 4^{t}$ is a solution of $x_{t+2}-7 x_{t+1}+12 x_{t}=0$
8. Find the general solution of the difference equation $x_{t+2}-2 x_{t+1}+x_{t}=0$.
9. Find the general solution of the difference equation $3 x_{t+2}-12 x_{t}=4$.
10. Find the general solution of the following difference equations:
a) $x_{t+2}-6 x_{t+1}+8 x_{t}=0$
b) $x_{t+2}-8 x_{t+1}+16 x_{t}=0$
c) $x_{t+2}+2 x_{t+1}+3 x_{t}=0$
11. Find the general solution of the difference equation $x_{t+2}+2 x_{t+1}+x_{t}=9 \cdot 2^{t}$.
12. A model for location uses the difference equation

$$
D_{t+2}-4(a b+1) D_{t+1}+4 a^{2} b^{2} D_{t}=0
$$

where a, b are constants and D_{t} is the unknown sequence. Find the solution of this equation assuming that $1+2 a b>0$.
13. Is the difference equation $x_{t+2}-x_{t+1}-x_{t}=0$ globally asymptotically stable?

14. Final Exam in GRA6035 30/05/2011, 3b

Find the general solution of the differential equation $y^{\prime \prime}+2 y^{\prime}-35 y=11 e^{t}-5$.
15. Final Exam in GRA6035 10/12/2010, 3b

Find the general solution of the differential equation $y^{\prime \prime}+y^{\prime}-6 y=t e^{t}$.

16. Final Exam in GRA6035 10/12/2007, Problem 3

a) Find the solution of $\dot{x}=(t-2) x^{2}$ that satisfies $x(0)=1$.
b) Find the general solution of the differential equation $\ddot{x}-5 \dot{x}+6 x=e^{7 t}$.
c) Find the general solution of the differential equation $\dot{x}+2 t x=t e^{-t^{2}+t}$.
d) Find the solution of $3 x^{2} e^{x^{3}+3 t} \dot{x}+3 e^{x^{3}+3 t}-2 e^{2 t}=0$ with $x(1)=-1$.

17. Final Exam in GRA6035 10/12/2010, Problem 3a

You borrow an amount K. The interest rate per period is r. The repayment is 500 in the first period, and increases with 10 for each subsequent period. Show that the outstanding balance b_{t} after period t satisfies the difference equation

$$
b_{t+1}=(1+r) b_{t}-(500+10 t), \quad b_{0}=K
$$

and solve this difference equation.

18. Mock Final Exam in GRA6035 12/2010, Problem 3

a) Find the solution of $y^{\prime}=y(1-y)$ that satisfies $y(0)=1 / 2$.
b) Find the general solution of the differential equation

$$
\left(\ln \left(t^{2}+1\right)-2\right) y^{\prime}=2 t-\frac{2 t y}{t^{2}+1}
$$

c) Solve the difference equation

$$
p_{t+2}=\frac{2}{3} p_{t+1}+\frac{1}{3} p_{t}, \quad p_{0}=100, \quad p_{1}=102
$$

19. Final Exam in GRA6035 30/05/2011, Problem 3a

Solve the difference equation $x_{t+1}=3 x_{t}+4, x_{0}=2$ and compute x_{5}.

Solutions

1

a) We first solve $\ddot{y}-y=0$. The characteristic equation is $r^{2}-1=0$. We get $y_{h}=$ $C_{1} e^{-t}+C_{2} e^{t}$. To find a solution of $\ddot{y}-y=e^{-t}$, we guess on solution of the form $y_{p}=A e^{-t}$. We have $\dot{y}_{p}=-A e^{-t}$ and $\ddot{y}_{p}=A e^{-t}$. Putting this into the left hand side of the equation, we get

$$
A e^{-t}-\left(A e^{-t}\right)=0
$$

So this does not work. The reason is that e^{-t} is a solution of the homogenous equation. We try something else: $y_{p}=A t e^{-t}$. This gives

$$
\begin{aligned}
\dot{y}_{p} & =A\left(e^{-t}-t e^{-t}\right) \\
\ddot{y}_{p} & =A\left(-e^{-t}-\left(e^{-t}-t e^{-t}\right)\right) \\
& =A e^{-t}(t-2)
\end{aligned}
$$

Putting this into the left hand side of the equation, we obtain

$$
\begin{aligned}
\ddot{y}_{p}-y_{p} & =A e^{-t}(t-2)-A t e^{-t} \\
& =-2 A e^{-t}
\end{aligned}
$$

We get a solution for $A=-\frac{1}{2}$. Thus the general solution is

$$
y(t)=-\frac{1}{2} t e^{-t}+C_{1} e^{-t}+C_{2} e^{t}
$$

b) The equation is equivalent to

$$
\ddot{y}-10 \dot{y}+25 y=\frac{2}{3} t+\frac{1}{3}
$$

We first solve the homogenous equation for which the characteristic equation is

$$
r^{2}-10 r+25=0
$$

This has one solution $r=5$. The general homogenous solution is thus

$$
y_{h}=\left(C_{1}+C_{2} t\right) e^{5 t}
$$

To find a particular solution, we try

$$
y_{p}=A t+B
$$

We have $\dot{y}_{p}=A$ and $\ddot{y}_{p}=0$. Putting this into the equation, we obtain

6

$$
0-10 A+25(A t+B)=\frac{2}{3} t+\frac{1}{3}
$$

We obtain $25 A=\frac{2}{3}$ and $-10 A+25 B=\frac{1}{3}$. From this we get $A=\frac{2}{75}$ and $-\frac{20}{75}+$ $25 B=\frac{25}{75} \Longrightarrow B=\frac{45}{25 \cdot 75}=\frac{3}{125}$. Thus

$$
y(t)=\frac{2}{75} t+\frac{3}{125}+\left(C_{1}+C_{2} t\right) e^{5 t}
$$

2
a) We first solve the homogenous equation $\ddot{y}+2 \dot{y}+y=0$. The characteristic equation is $r^{2}+2 r+1=0$ which has the one solution, $r=-1$. We get

$$
y_{h}(t)=\left(C_{1}+C_{2} t\right) e^{-t} .
$$

To find a particular solution we try with $y_{p}=A t^{2}+B t+C$. We get $\dot{y}_{p}=2 A t+B$ and $\ddot{y}_{p}=2 A$. Substituting this into the left hand side of the equation, we get

$$
\begin{aligned}
& 2 A+2(2 A t+B)+\left(A t^{2}+B t+C\right) \\
& =2 A+2 B+C+(4 A+B) t+A t^{2}
\end{aligned}
$$

We get $A=1,(4 A+B)=0$ and $2 A+2 B+C=0$. We obtain $A=1, B=-4$ and $C=-2 A-2 B=-2+8=6$. Thus the general solution is

$$
y(t)=t^{2}-4 t+6+\left(C_{1}+C_{2} t\right) e^{-t} .
$$

We get $\dot{y}=2 t-4+C_{2} e^{-t}+\left(C_{1}+C_{2} t\right) e^{-t}(-1)=2 t-C_{1} e^{-t}+C_{2} e^{-t}-t C_{2} e^{-t}-$ 4. From $y(0)=0$ we get $6+C_{1}=0 \Longrightarrow C_{1}=-6$. From $\dot{y}(0)=1$, we get $-C_{1}+C_{2}-4=1 \Longrightarrow C_{2}=5+C_{1}=5-6=-1$. Thus we have

$$
y(t)=t^{2}-4 t+6-(6+t) e^{-t} .
$$

b) We first solve the homogenous equation $\ddot{y}+4 y=0$. The characteristic equation $r^{2}+4=0$ has no solutions, so we put $\alpha=-\frac{1}{2} 0=0$ and $\beta=\sqrt{4-\frac{1}{2} 0}=2$. This gives $y_{h}=e^{\alpha t}\left(C_{1} \cos \beta t+C_{2} \sin \beta t\right)=C_{1} \cos 2 t+C_{2} \sin 2 t$. To find a solution of $\ddot{y}+4 y=4 t+1$ we try $y_{p}=A+B t$. This gives $\dot{y}_{p}=B$ and $\ddot{y}_{p}=0$. Putting this into the equation, we find that

$$
\ddot{y}_{p}+4 y_{p}=0+4(A+B t)=4 A+4 B t=4 t+1 .
$$

This implies that $B=1$ and $A=\frac{1}{4}$. Thus

$$
y(t)=C_{1} \cos 2 t+C_{2} \sin 2 t+\frac{1}{4}+t
$$

3 We have the following solutions:
a) Substituting $t=e^{s}$ transforms the equation into $y^{\prime \prime}(s)+4 y^{\prime}(s)+3 y^{\prime}(s)=0$. The characteristic equation is $r^{2}+4 r+3=0$. The solutions are $r=-3,-1$. Thus $y(s)=C_{1} e^{-3 t}+C_{2} e^{-t}$. Substituting $s=\ln t$ gives $y(t)=C_{1} t^{-3}+C_{2} t^{-1}$.
b) Substituting $t=e^{s}$ transforms the equation into $y^{\prime \prime}(s)-4 y^{\prime}(s)+3 y^{\prime}(s)=\left(e^{s}\right)^{2}=$ $e^{2 s}$. First we solve the homogenous equation $y^{\prime \prime}(s)-5 y^{\prime}(s)+3 y^{\prime}(s)=0$. The characteristic equation is $r^{2}-4 r+3=0$, and has the solutions $r=1$ and $r=3$. Thus $y_{h}=C_{1} e^{s}+C_{2} e^{3 s}$. To find a particular solution of $y^{\prime \prime}(s)-4 y^{\prime}(s)+3 y(s)=$ $\left(e^{s}\right)^{2}=e^{2 s}$ we try $y_{p}=A e^{2 s}$. We have $y_{p}^{\prime}=2 A e^{2 s}$ and $y_{p}^{\prime \prime}=4 A e^{2 s}$. Substituting this into the equation, gives

$$
\begin{aligned}
y^{\prime \prime}(s)-4 y^{\prime}(s)+3 y(s) & =4 A e^{2 s}-4 \cdot 2 A e^{2 s}+3 \cdot A e^{2 s} \\
& =-A e^{2 s}
\end{aligned}
$$

Thus we get $A=-1$, and

$$
y(s)=C_{1} e^{s}+C_{2} e^{3 s}-e^{2 s}
$$

Substituting $s=\ln t$ gives

$$
y(t)=C_{1} t+C_{2} t^{3}-t^{2} .
$$

4 If $a \neq 0$ we get the general solution

$$
y=100 \frac{e^{b t}}{2 a b-3 a^{2}+b^{2}}+C_{1} e^{a t}+C_{2} e^{-3 a t}
$$

provided that $2 a b-3 a^{2}+b^{2} \neq 0$. When $a=0$ and $b \neq 0$ we get the general solution

$$
y=C_{1}+\frac{100}{b^{2}} e^{b t}+C_{2} t
$$

There are also some other cases to consider, see answers in FMEA ey.6.3.9.
5 We write the difference equation $x_{t+1}-2 x_{t}=4$, and see that it is a first order linear inhomogeneous equation. The homogeneous solution is $x_{t}^{h}=C \cdot 2^{t}$ since the characteristic equation is $r-2=0$, so that $r=2$. We look for a particular solution of the form $x_{t}^{p}=A$ (constant), and see that $A-2 A=4$, so that $A=-4$ and $x_{t}^{p}=-4$. Hence the general solution is

$$
x_{t}=x_{t}^{h}+x_{t}^{p}=C \cdot 2^{t}-4
$$

The initial condition $x_{0}=1$ gives $C \cdot 1-4=1$, or $C=5$. The solution is therefore $x_{t}=\mathbf{5} \cdot \mathbf{2}^{\mathbf{t}}-\mathbf{4}$.

6 We write the difference equation $w_{t+1}-1.2 w_{t}=50$, and see that it is a first order linear inhomogeneous equation. The homogeneous solution is $w_{t}^{h}=C \cdot 1.2^{t}$ since the characteristic root is 1.2 . We look for a particular solution of the form $w_{t}^{p}=A$ (constant), and see that $A-1.2 A=50$, so that $A=-250$ and $x_{t}^{p}=-250$. Hence the
general solution is

$$
w_{t}=w_{t}^{h}+w_{t}^{p}=C \cdot 1.2^{t}-250
$$

The initial condition $w_{0}=1000$ gives $C \cdot 1-250=1000$, or $C=1250$. The solution is therefore $w_{t}=\mathbf{1 2 5 0} \cdot \mathbf{1 . 2}-\mathbf{2 5 0}$.

7 We compute the left hand side of the difference equations to check that the given sequences are solutions:
a) $\left(A+B \cdot 2^{t+2}\right)-3\left(A+B \cdot 2^{t+1}\right)+2\left(A+B \cdot 2^{t}\right)=(A-3 A+2 A)+(4 B-6 B+2 B)$. $2^{t}=0$
b) $\left(A \cdot 3^{t+2}+B \cdot 4^{t+2}\right)-7\left(A \cdot 3^{t+1}+B \cdot 4^{t+1}\right)+12\left(A \cdot 3^{t}+B \cdot 4^{t}\right)=(9 A-21 A+$ $12 A) \cdot 3^{t}+(16 B-28 B+12 B) \cdot 2^{t}=0$

We see that the given sequence is a solution in each case.
8 The difference equation $x_{t+2}-2 x_{t+1}+x_{t}=0$ is a second order linear homogeneous equation. The characteristic equation is $r^{2}-2 r+1=0$ and has a double root $r=1$, and therefore the general solution is

$$
x_{t}=C_{1} \cdot 1^{t}+C_{2} t \cdot 1^{t}=\mathbf{C}_{1}+\mathbf{C}_{2} \mathbf{t}
$$

9 We write the difference equation $3 x_{t+2}-12 x_{t}=4$ as $x_{t+2}-4 x_{t}=1$. It is a second order linear inhomogeneous equation. We first find the homogeneous solution: The characteristic equation is $r^{2}-4=0$ and has roots $r= \pm 2$, and therefore the homogeneous solution is $x_{t}=C_{1} \cdot 2^{t}+C_{2} \cdot(-2)^{t}$. For the particular solution, we see that $f_{t}=4$ in the original difference equation $3 x_{t+2}-12 x_{t}=4$, so we guess $x_{t}^{p}=A$, a constant. This gives $x_{t}=A$ and $x_{t+2}=A$, so $3 A-12 A=4$, or $A=-4 / 9$. Hence the particular solution is $x_{t}^{p}=-4 / 9$, and the general solution is

$$
x_{t}=x_{t}^{h}+x_{t}^{p}=\mathbf{C}_{\mathbf{1}} \cdot \mathbf{2}^{\mathbf{t}}+\mathbf{C}_{\mathbf{2}} \cdot(-\mathbf{2})^{\mathbf{t}}-\mathbf{4} / \mathbf{9}
$$

10 In each case, we solve the characteristic equation to find the general solution:
a) The characateristic equation of $x_{t+2}-6 x_{t+1}+8 x_{t}=0$ is $r^{2}-6 r+8=0$, and has roots $r=2,4$. Therefore, the general solution is $x_{t}=\mathbf{C}_{\mathbf{1}} \cdot \mathbf{2}^{\mathbf{t}}+\mathbf{C}_{\mathbf{2}} \cdot \mathbf{4}^{\mathbf{t}}$.
b) The characateristic equation of $x_{t+2}-8 x_{t+1}+16 x_{t}=0$ is $r^{2}-8 r+16=0$, and has a double root $r=4$. Therefore, the general solution is $x_{t}=\mathbf{C}_{\mathbf{1}} \cdot \mathbf{4}^{\mathbf{t}}+\mathbf{C}_{\mathbf{2}} \mathbf{t} \cdot \mathbf{4}^{\mathrm{t}}$.
c) The characateristic equation of $x_{t+2}+2 x_{t+1}+3 x_{t}=0$ is $r^{2}+2 r+3=0$, and has roots given by

$$
r=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 3}}{2}=-1 \pm \sqrt{-8} / 2
$$

Hence there are no real roots. We have $a=2$ and $b=3$, so the general solution is $x_{t}=(\sqrt{\mathbf{3}})^{\mathbf{t}}\left(\mathbf{C}_{\mathbf{1}} \cos (\mathbf{2} .186 \mathrm{t})+\mathbf{C}_{\mathbf{2}} \sin (\mathbf{2} .186 \mathbf{t})\right)$ since we have that $\cos (2.186) \simeq$ $-1 / \sqrt{3}$.
11 The difference equation $x_{t+2}+2 x_{t+1}+x_{t}=9 \cdot 2^{t}$ is a second order linear inhomogeneous equation. We first find the homogeneous solution, and therefore consider the homogeneous equation $x_{t+2}+2 x_{t+1}+x_{t}=0$. The characteristic equation
is $r^{2}+2 r+1=0$ and it has a double root $r=-1$. Therefore the homogeneous solution is $x_{t}^{h}=C_{1} \cdot(-1)^{t}+C_{2} t \cdot(-1)^{t}=\left(C_{1}+C_{2} t\right)(-1)^{t}$. We then find a particular solution of the inhomogeneous equation $x_{t+2}+2 x_{t+1}+x_{t}=9 \cdot 2^{t}$, and look for a solution of the form $x_{t}=A \cdot 2^{t}$. This gives

$$
A \cdot 2^{t+2}+2\left(A \cdot 2^{t+1}\right)+\left(A \cdot 2^{t}\right)=9 \cdot 2^{t} \quad \Rightarrow \quad(4 A+4 A+A) \cdot 2^{t}=9 \cdot 2^{t}
$$

This gives $9 A=9$ or $A=1$, and the particular solution is $x_{t}^{p}=1 \cdot 2^{t}=2^{t}$. Hence the general solution is

$$
x_{t}=x_{t}^{h}+x_{t}^{p}=\left(\mathbf{C}_{\mathbf{1}}+\mathbf{C}_{\mathbf{2}} \mathbf{t}\right) \cdot(-\mathbf{1})^{\mathbf{t}}+\mathbf{2}^{\mathbf{t}}
$$

12 The difference equation $D_{t+2}-4(a b+1) D_{t+1}+4 a^{2} b^{2} D_{t}=0$ is a linear second order homogeneous equation. Its characteristic equation is $r^{2}-4(a b+1) r+4 a^{2} b^{2}=$ 0 , and it has roots given by

$$
r=\frac{4(a b+1) \pm \sqrt{16(a b+1)^{2}-4 \cdot 4 a^{2} b^{2}}}{2}=2(a b+1) \pm 2 \sqrt{2 a b+1}
$$

Since we assume that $1+2 a b>0$, there are distinct characteristic roots $r_{1} \neq r_{2}$ given by

$$
r_{1}=2(a b+1+\sqrt{2 a b+1}), \quad r_{2}=2(a b+1-\sqrt{2 a b+1})
$$

and the general solution is

$$
D_{t}=C_{1} \cdot r_{1}^{t}+C_{2} \cdot r_{2}^{t}=\mathbf{2}^{\mathbf{t}}\left(\mathbf{C}_{\mathbf{1}} \cdot(\mathbf{a b}+\mathbf{1}+\sqrt{\mathbf{2 a b}+\mathbf{1}})^{\mathbf{t}}+\mathbf{C}_{\mathbf{2}} \cdot(\mathbf{a b}+\mathbf{1}-\sqrt{\mathbf{2 a b}+\mathbf{1}})^{\mathbf{t}}\right)
$$

13 The difference equation $x_{t+2}-x_{t+1}-x_{t}=0$ is a linear second order homogeneous equation, with characteristic equation $r^{2}-r-1=0$ and characteristic roots given by

$$
r=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1 \pm \sqrt{5}}{2}
$$

Hence it has two distinct characteristic roots $r_{1} \neq r_{2}$ given by

$$
r_{1}=\frac{1+\sqrt{5}}{2} \simeq 1.618, \quad r_{2}=\frac{1-\sqrt{5}}{2} \simeq-0.618
$$

and the general solution is $x_{t}=C_{1} \cdot r_{1}^{t}+C_{2} \cdot r_{2}^{t}$. It is globally asymptotically stable if $x_{t} \rightarrow 0$ as $t \rightarrow \infty$ for all values of C_{1}, C_{2}, and this is not the case since $r_{1}>1$. In fact, $x_{t} \rightarrow \pm \infty$ as $t \rightarrow \infty$ if $C_{1} \neq 0$. Therefore, the difference equation is not globally asymptotically stable.
14 The homogeneous equation $y^{\prime \prime}+2 y^{\prime}-35 y=0$ has characteristic equation $r^{2}+$ $2 r-35=0$ and roots $r=5$ and $r=-7$, so $y_{h}=C_{1} e^{5 t}+C_{2} e^{-7 t}$. We try to find a particular solution of the form $y=A e^{t}+B$, which gives

$$
y^{\prime}=y^{\prime \prime}=A e^{t}
$$

Substitution in the differential equation gives

$$
A e^{t}+2 A e^{t}-35\left(A e^{t}+B\right)=11 e^{t}-5 \Leftrightarrow-32 A=11 \text { and }-35 B=-5
$$

This gives $A=-11 / 32$ and $B=1 / 7$. Hence the general solution of the differential equation is $y=y_{h}+y_{p}=C_{1} e^{5 t}+C_{2} e^{-7 t}-\frac{11}{32} e^{t}+\frac{1}{7}$
15 The homogeneous equation $y^{\prime \prime}+y^{\prime}-6 y=0$ has characteristic equation $r^{2}+r-$ $6=0$ and roots $r=2$ and $r=-3$, so $y_{h}=C_{1} e^{2 t}+C_{2} e^{-3 t}$. We try to find a particular solution of the form $y=(A t+B) e^{t}$, which gives

$$
y^{\prime}=(A t+A+B) e^{t}, \quad y^{\prime \prime}=(A t+2 A+B) e^{t}
$$

Substitution in the differential equation gives

$$
(A t+2 A+B) e^{t}+(A t+A+B) e^{t}-6(A t+B) e^{t}=t e^{t} \Leftrightarrow-4 A=1 \text { and } 3 A-4 B=0
$$

This gives $A=-1 / 4$ and $B=-3 / 16$. Hence the general solution of the differential equation is $y=y_{h}+y_{p}=C_{1} e^{2 t}+C_{2} e^{-3 t}-\left(\frac{1}{4} t+\frac{3}{16}\right) e^{t}$

16 Final Exam in GRA6035 10/12/2007, Problem 3

a) We have $\dot{x}=(t-2) x^{2} \Longrightarrow \frac{1}{x^{2}} \dot{x}=t-2 \Longrightarrow \int \frac{1}{x^{2}} d x=\int(t-2) d t \Longrightarrow-\frac{1}{x}=$ $\frac{1}{2} t^{2}-2 t+C \Longrightarrow x=\frac{-2}{t^{2}-4 t+2 C}$. The initial condition $x(0)=\frac{-2}{2 C}=\frac{-1}{C}=1 \Longrightarrow$ $C=-1 \Longrightarrow x(t)=\frac{-2}{t^{2}-4 t-2}$.
b) We have $\ddot{x}-5 \dot{x}+6 x=0, r^{2}-5 r+6=0 \Longrightarrow r=3, r=2 \Longrightarrow x_{h}(t)=A e^{2 t}+$ $B e^{3 t}$, and $x_{p}=C e^{7 t} \Longrightarrow \dot{x}_{p}=7 C e^{7 t} \Longrightarrow \ddot{x}_{p}=49 C e^{7 t}$ gives $\ddot{x}_{p}-5 \dot{x}_{p}+6 x_{p}=$ $C e^{7 t}(49-5 \cdot 7+6)=20 C e^{7 t}=1 \Longrightarrow C=\frac{1}{20}$. Hence $x(t)=A e^{2 t}+B e^{3 t}+\frac{1}{20} e^{7 t}$.
c) Integrating factor $e^{t^{2}} \Longrightarrow x e^{t^{2}}=\int t e^{-t^{2}+t} e^{t^{2}} d t=\int t e^{t} d t=t e^{t}-e^{t}+C \Longrightarrow$ $x(t)=\left(t e^{t}-e^{t}+C\right) e^{-t^{2}}$.
d) We have $\frac{\partial}{\partial t}\left(3 x^{2} e^{x^{3}+3 t}\right)=9 x^{2} e^{3 t+x^{3}}$ and $\frac{\partial}{\partial x}\left(3 e^{x^{3}+3 t}-2 e^{2 t}\right)=9 x^{2} e^{3 t+x^{3}}$, so the differential equation is exact. We look for h with $h_{x}^{\prime}=3 x^{2} e^{x^{3}+3 t} \Longrightarrow h=e^{x^{3}+3 t}+$ $\alpha(t) \Longrightarrow h_{t}^{\prime}=3 e^{x^{3}+3 t}+\alpha^{\prime}(t)$. But $h_{t}^{\prime}=3 e^{x^{3}+3 t}+\alpha^{\prime}(t)=3 e^{x^{3}+3 t}-2 e^{2 t} \Longrightarrow$ $\alpha^{\prime}(t)=-2 e^{2 t} \Longrightarrow \alpha(t)=-e^{2 t}+C \Longrightarrow h=e^{x^{3}+3 t}-e^{2 t}+C$. This gives solution in implicit form

$$
h=e^{x^{3}+3 t}-e^{2 t}=K
$$

The initial condition $x(1)=-1 \Longrightarrow e^{(-1)^{3}+3}-e^{2}=K \Longrightarrow K=0 \Longrightarrow e^{x^{3}+3 t}-$ $e^{2 t}=0 \Longrightarrow e^{x^{3}+3 t}=e^{2 t} \Longrightarrow x^{3}+3 t=2 t \Longrightarrow x^{3}=-t \Longrightarrow x(t)=\sqrt[3]{-t}$.

17 Final Exam in GRA6035 10/12/2010, Problem 3a

We have $b_{t+1}-b_{t}=r b_{t}-s_{t+1}$, where $s_{t+1}=500+10 t$ is the repayment in period $t+1$. Hence we get the difference equation

$$
b_{t+1}=(1+r) b_{t}-(500+10 t), \quad b_{0}=K
$$

The homogenous solution is $b_{t}^{h}=C(1+r)^{t}$. We try to find a particular solution of the form $b_{t}=A t+B$, which gives $b_{t+1}=A t+A+B$. Substitution in the difference equation gives

$$
A t+A+B=(1+r)(A t+B)-(500+10 t)=((1+r) A-10) t+(1+r) B-500
$$

and this gives $A=10 / r$ and $B=10 / r^{2}+500 / r$. Hence the solution of the difference equation is

$$
b_{t}=b_{t}^{h}+b_{t}^{p}=C(1+r)^{t}+\frac{10}{r} t+\frac{10}{r^{2}}+\frac{500}{r}
$$

The initial value condition is $K=C+10 / r^{2}+500 / r$, hence we obtain the solution

$$
b_{t}=\left(\mathbf{K}-\frac{\mathbf{1 0}}{\mathbf{r}^{2}}-\frac{\mathbf{5 0 0}}{\mathbf{r}}\right)(\mathbf{1}+\mathbf{r})^{\mathbf{t}}+\frac{\mathbf{1 0}}{\mathbf{r}} \mathbf{t}+\frac{\mathbf{1 0}}{\mathbf{r}^{2}}+\frac{\mathbf{5 0 0}}{\mathbf{r}}
$$

18 Mock Final Exam in GRA6035 12/2010, Problem 3

See handwritten solution on the coarse page for GRA 6035 Mathematics 2010/11.

19 Final Exam in GRA6035 30/05/2011, Problem 3a

We have $x_{t+1}-3 x_{t}=4$, and the homogenous solution is $x_{t}^{h}=C \cdot 3^{t}$. We try to find a particular solution of the form $x_{t}=A$, and substitution in the difference equation gives $A=3 A+4$, so $A=-2$ is a particular solution. Hence the solution of the difference equation is

$$
x_{t}=x_{t}^{h}+x_{t}^{p}=C \cdot 3^{t}-2
$$

The initial value condition is $2=C-2$, hence we obtain the solution

$$
x_{t}=\mathbf{4} \cdot \mathbf{3}^{\mathbf{t}}-\mathbf{2}
$$

This gives $x_{5}=\mathbf{9 7 0}$.

