Problem Sheet 11 with Solutions GRA 6035 Mathematics

Problems

1. Find the general solution of the differential equation $\dot{y}+\frac{1}{2} y=\frac{1}{4}$. Determine the equilibrium state of the equation. Is it stable? Draw some typical solutions.
2. Find the general solution of the following differential equations:
a) $\dot{y}+y=10$
b) $\dot{y}-3 y=27$
c) $4 \dot{y}+5 y=100$
3. Find the general solution of the following differential equations, and in each case, find the particular solution satisfying $y(0)=1$:
a) $\dot{y}-3 y=5$
b) $3 \dot{y}+2 y+16=0$
c) $\dot{y}+2 y=t^{2}$
4. Find the general solution of the following differential equations:
a) $t \dot{y}+2 y+t=0 \quad(t \neq 0)$
b) $\dot{y}-y / t=t \quad(t>0)$
c) $\dot{y}-\frac{t}{t^{2}-1} y=t \quad(t>1)$
d) $\dot{y}-\frac{2}{t} y+\frac{2 a^{2}}{t^{2}}=0 \quad(t>0)$
5. Determine which of the following differential equations are exact, and find the general solution in those cases where it is exact:
a) $(2 y+t) \dot{y}+2+y=0$
b) $y^{2} \dot{y}+2 t+y=0$
c) $\left(t^{5}+6 y^{2}\right) \dot{y}+5 y t^{4}+2=0$
6. Solve the differential equation $2 t+3 y^{2} \dot{y}=0$, first as a separable differential equation and then as an exact differential equation.
7. Find the general solution of the following differential equations:
a) $\ddot{y}=t$
b) $\ddot{y}=e^{t}+t^{2}$
8. Solve the initial value problem $\ddot{y}=t^{2}-t, \quad y(0)=1, \dot{y}(0)=2$.
9. Solve the initial value problem $\ddot{y}=\dot{y}+t, \quad y(0)=1, y(1)=2$.
10. Find the general solution of the following differential equations:
a) $\ddot{y}-3 \dot{y}=0$
b) $\ddot{y}+4 \dot{y}+8 y=0$
c) $3 \ddot{y}+8 \dot{y}=0$
d) $4 \ddot{y}+4 \dot{y}+y=0$
e) $\ddot{y}+\dot{y}-6 y=0$
f) $\ddot{y}+3 \dot{y}+2 y=0$
11. Consider the equation $\ddot{y}+a \dot{y}+b y=0$ when $a^{2} / 4-b=0$, so that that the characteristic equation has a double root $r=-a / 2$. Let $y(t)=u(t) e^{r t}$ and prove that this function is a solution if and only if $\ddot{u}=0$. Conclude that the general solution is $y=(A+B t) e^{r t}$.
12. Final Exam in GRA6035 30/05/2011, 3c

Solve the initial value problem $(2 t+y)-(4 y-t) y^{\prime}=0, y(0)=0$.
13. Final Exam in GRA6035 10/12/2010, 3c

Solve the initial value problem

$$
\frac{t}{y^{2}} y^{\prime}=\frac{1}{y}-3 t^{2}, \quad y(1)=\frac{1}{3}
$$

Solutions

1 Since the differential equation is linear first order with constant coeffients $a=1 / 2$ and $b=1 / 4$, it has general solution

$$
y=\frac{b}{a}+C e^{-a t}=\frac{1}{2}+C e^{-t / 2}
$$

Since $y \rightarrow 1 / 2$ when $t \rightarrow \infty$ for all values of C, the equation is stable (and also globally asymptotically stable), with equilibrium state $y=1 / 2$.
2 Since the differential equations are linear first order, they have general solutions

$$
y=\frac{b}{a}+C e^{-a t}
$$

This gives
a) $y=10+C e^{-t}$
b) $y=-9+C e^{3 t}$
c) $y=20+C e^{-5 t / 4}$

3 Since the first two differential equation are linear first order, they have general solutions

$$
y=\frac{b}{a}+C e^{-a t}
$$

This gives
a) $y=-5 / 3+C e^{3 t}$, and $y(0)=1$ gives $C=8 / 3$
b) $y=-8+C e^{-2 t / 3}$, and $y(0)=1$ gives $C=9$

The last equation has integration factor $u=e^{2 t}$, and this gives $y e^{2 t}=\int t^{2} e^{2 t} d t$. We solve the integral by using integration by parts twice, and get

$$
y e^{2 t}=\left(t^{2} / 2-t / 2+1 / 4\right) e^{2 t}+\mathscr{C} \Rightarrow y=t^{2} / 2-t / 2+1 / 4+\mathscr{C} e^{-2 t}
$$

The condition $y(0)=1$ gives $\mathscr{C}=3 / 4$.
4 See [FMEA] Problem 5.4.6.
5
a) We consider $(2+y)+(2 y+t) \dot{y}=0$ with $f=2+y$ and $g=2 y+t$. Since $f_{y}^{\prime}=$ $1=g_{t}^{\prime}$, the equation is exact. We find $h=y^{2}+y t+2 t$ satisfy $h_{t}^{\prime}=f$ and $h_{y}^{\prime}=g$, so the general solution is

$$
y^{2}+y t+2 t=C \quad \Rightarrow \quad y=\frac{-t \pm \sqrt{t^{2}-8 t+4 C}}{2}
$$

b) $(2 t+y)+y^{2} \dot{y}=0$ with $f=2 t+y$ and $g=y^{2}$. Since $f_{y}^{\prime}=1$ and $g_{t}^{\prime}=0$, the equation is not exact.
c) $\left(5 y t^{4}+2\right)+\left(t^{5}+6 y^{2}\right) \dot{y}=0$ with $f=5 y t^{4}+2$ and $g=t^{5}+6 y^{2}$. Since $f_{y}^{\prime}=5 t^{4}=$ g_{t}^{\prime}, the equation is exact. We find $h=t^{5} y+2 y^{3}+2 t$ satisfy $h_{t}^{\prime}=f$ and $h_{y}^{\prime}=g$, so the general solution (in implicit form) is

$$
t^{5} y+2 y^{3}+2 t=C
$$

It is difficult to find the solution in explicit form in this problem (it is a third degree equation in y).
6 The differential equation $2 t+3 y^{2} \dot{y}=0$ can be written as $3 y^{2} \dot{y}=-2 t$, and is therefore separable with solution $y^{3}=-t^{2}+C$, which gives $y=\sqrt[3]{C-t^{2}}$. We write $f=2 t$ and $g=3 y^{2}$; then $h=t^{2}+y^{3}$ has the property that $h_{t}^{\prime}=f$ and $h_{y}^{\prime}=g$, so the equation is exact with solution $t^{2}+y^{3}=C$, which again gives $y=\sqrt[3]{C-t^{2}}$.
7 We solve the differential equation by direct integration:
a) $\ddot{y}=t \Longrightarrow \dot{y}=\frac{1}{2} t^{2}+C_{1} \Longrightarrow y=\frac{1}{6} t^{3}+C_{1} t+C_{2}$
b) $\ddot{y}=e^{t}+t^{2} \Longrightarrow \dot{y}=e^{t}+\frac{1}{3} t^{3}+C_{1} \Longrightarrow y=e^{t}+\frac{1}{12} t^{4}+C_{1} t+C_{2}$

8 We have $\ddot{y}=t^{2}-t \Longrightarrow \dot{y}=\frac{1}{3} t^{3}-\frac{1}{2} t^{2}+C_{1} \Longrightarrow y=\frac{1}{12} t^{4}-\frac{1}{6} t^{3}+C_{1} t+C_{2}$. The initial condition $y(0)=1$ gives $\frac{1}{12} 0^{4}-\frac{1}{6} 0^{3}+C_{1} 0+C_{2}=C_{2}=1$, and $\dot{y}(0)=2$ gives $\frac{1}{3} 0^{3}-\frac{1}{2} 0+C_{1}=C_{1}=2$. The particular solution is therefore

$$
y(t)=\frac{1}{12} t^{4}-\frac{1}{6} t^{3}+2 t+1
$$

9 Substitute $u=\dot{y}$. Then $\ddot{y}=\dot{y}+t \Leftrightarrow \dot{u}=u+t \Leftrightarrow \dot{u}-u=t$. The integrating factor is e^{-t}, and we get

$$
u e^{-t}=\int t e^{-t} d t=-e^{-t}-t e^{-t}+C_{1}
$$

From this we obtain $u=\left(-e^{-t}-t e^{-t}+C_{1}\right) e^{t}=C_{1} e^{t}-t-1$ and we integrate to find y from $u=\dot{y}$, and get $y=\int\left(C_{1} e^{t}-t-1\right) d t=C_{1} e^{t}-t-\frac{1}{2} t^{2}+C_{2}$. The initial condition $y(0)=1$ gives $C_{1}+C_{2}=1 \Longrightarrow C_{2}=1-C_{1}$, and the condition $y(1)=2$ gives $C_{1} e-1-\frac{1}{2}+C_{2}=C_{1} e-3 / 2+1-C_{1}=2$. This gives $C_{1}(e-1)=5 / 2$, or

$$
C_{1}=\frac{5}{2(e-1)}, \quad C_{2}=1-\frac{5}{2(e-1)}=\frac{2 e-7}{2(e-1)}
$$

The particular solution is therefore

$$
y(t)=\frac{5}{2(e-1)} \cdot e^{t}-t-\frac{1}{2} t^{2}+\frac{2 e-7}{2(e-1)}
$$

10
a) The characteristic equation is $r^{2}-3 r=0 \Longrightarrow r=0,3 \Longrightarrow y(t)=C_{1}+C_{2} e^{3 t}$.
b) Characteristic equation is $r^{2}+4 r+8=0$. This has no real solutions. Thus we put $\alpha=-\frac{1}{2} a=-\frac{1}{2} 4=-2, \beta=\sqrt{b-\frac{1}{4} a^{2}}=\sqrt{8-\frac{1}{4} 4^{2}}=2$. From this the general solution is $y(t)=e^{\alpha t}(A \cos \beta t+B \sin \beta t)=e^{-2 t}(A \cos 2 t+B \sin 2 t)$.
c) $3 \ddot{y}+8 \dot{y}=0 \Longleftrightarrow \ddot{y}+\frac{8}{3} \dot{y}=0$. The characteristic equation is $r^{2}+\frac{8}{3} r=0 \Longrightarrow r=0$ or $r=-\frac{8}{3}$. The general solution is $y(t)=C_{1} e^{0 t}+C_{2} e^{-\frac{8}{3} t}=C_{1}+C_{2} e^{-\frac{8}{3} t}$.
d) $4 \ddot{y}+4 \dot{y}+y=0$ has characteristic equation $4 r^{2}+4 r+1=0$. There is one solution $r=-\frac{1}{2}$. The general solution is $y(t)=\left(C_{1}+C_{2} t\right) e^{-\frac{1}{2} t}$.
e) $\ddot{y}+\dot{y}-6 y=8$ has characteristic equation $r^{2}+r-6=0$. It has the solutions $r=-3$ and $r=2$. The general solution is thus

$$
y(t)=C_{1} e^{-3 t}+C_{2} e^{2 t}
$$

f) $\ddot{y}+3 \dot{y}+2 y=0$ has characteristic equation $r^{2}+3 r+2=0$. The solutions are $r=-1$ and $r=-2$. The general solution is thus

$$
y(t)=C_{1} e^{-t}+C_{2} e^{-2 t}
$$

$11 y=u e^{r t} \Longrightarrow \dot{y}=\dot{u} e^{r t}+u r e^{r t}=e^{r t}(\dot{u}+u r) \Longrightarrow \ddot{y}=\ddot{u} e^{r t}+\dot{u} r e^{r t}+r\left(\dot{u} e^{r t}+\right.$ $\left.u r e^{r t}\right)=e^{r t}\left(\ddot{u}+2 r \dot{u}+u r^{2}\right)$. From this we get

$$
\begin{aligned}
\ddot{y}+a \dot{y}+b y & =e^{r t}\left[\left(\ddot{u}+2 r \dot{u}+u r^{2}\right)+a(\dot{u}+u r)+b u\right] \\
& =e^{r t}\left[\ddot{u}+(2 r+a) \dot{u}+\left(r^{2}+a r+b\right) u\right]
\end{aligned}
$$

The characteristic equation is assumed to have one solution $r=\frac{-a}{2}$. Putting $r=\frac{-a}{2}$ into the eypression we get

$$
\ddot{y}+a \dot{y}+b y=e^{r t} \ddot{u}
$$

So $y=u e^{r t}$ is a solution if and only if $e^{r t} \ddot{u}=0 \Leftrightarrow \ddot{u}=0$. The differential equation $\ddot{u}=0$ has the general solution $u=A+B t$. Thus $y=(A+B t) e^{r t}$ is the general solution of $\ddot{y}+a \dot{y}+b y=0$.
12 The differential equation can be written in the form

$$
(2 t+y)+(t-4 y) y^{\prime}=0
$$

and we see that it is exact. Hence its solution can be written in the form $u(y, t)=C$, where $u(y, t)$ is a function that satisfies

$$
\frac{\partial u}{\partial t}=2 t+y \quad \text { and } \quad \frac{\partial u}{\partial y}=t-4 y
$$

One solution is $u(y, t)=t^{2}+t y-2 y^{2}$, and the initial condition $y(0)=0$ gives $C=0$.
Hence

$$
t^{2}+t y-2 y^{2}=0 \quad \Leftrightarrow \quad y=\frac{-t \pm 3 t}{-4}
$$

The solution to the initial value problem is therefore

$$
y=-\frac{1}{2} t \text { or } y=t
$$

13 The differential equation can be written in the form

$$
\left(3 t^{2}-\frac{1}{y}\right)+\frac{t}{y^{2}} y^{\prime}=0
$$

and we see that it is exact. Hence it can be written of the form $u(y, t)=C$, where $u(y, t)$ is a function that satisfies

$$
\frac{\partial u}{\partial t}=3 t^{2}-\frac{1}{y} \quad \text { and } \quad \frac{\partial u}{\partial y}=\frac{t}{y^{2}}
$$

One solution is $u(y, t)=t^{3}-t / y$, and this gives

$$
t^{3}-\frac{t}{y}=C \quad \Leftrightarrow \quad y=\frac{t}{t^{3}-C}
$$

The initial condition gives $1 /(1-C)=1 / 3$ or $C=-2$. The solution to the initial value problem is therefore

$$
y=\frac{t}{t^{3}+2}
$$

