Problem Sheet 11 with Solutions GRA 6035 Mathematics

BI Norwegian Business School

Problems

1. Find the general solution of the differential equation $\dot{y} + \frac{1}{2}y = \frac{1}{4}$. Determine the equilibrium state of the equation. Is it stable? Draw some typical solutions.

2. Find the general solution of the following differential equations:

a) $\dot{y} + y = 10$ b) $\dot{y} - 3y = 27$ c) $4\dot{y} + 5y = 100$

3. Find the general solution of the following differential equations, and in each case, find the particular solution satisfying y(0) = 1:

a) $\dot{y} - 3y = 5$ b) $3\dot{y} + 2y + 16 = 0$ c) $\dot{y} + 2y = t^2$

4. Find the general solution of the following differential equations:

a)
$$t\dot{y} + 2y + t = 0$$
 $(t \neq 0)$
b) $\dot{y} - y/t = t$ $(t > 0)$
c) $\dot{y} - \frac{t}{t^2 - 1}y = t$ $(t > 1)$
d) $\dot{y} - \frac{2}{t}y + \frac{2a^2}{t^2} = 0$ $(t > 0)$

5. Determine which of the following differential equations are exact, and find the general solution in those cases where it is exact:

a)
$$(2y+t)\dot{y}+2+y=0$$

b) $y^2\dot{y}+2t+y=0$
c) $(t^5+6y^2)\dot{y}+5yt^4+2=0$

6. Solve the differential equation $2t + 3y^2\dot{y} = 0$, first as a separable differential equation and then as an exact differential equation.

7. Find the general solution of the following differential equations:

a)
$$\ddot{y} = t$$

b) $\ddot{y} = e^t + t^2$

8. Solve the initial value problem $\ddot{y} = t^2 - t$, y(0) = 1, $\dot{y}(0) = 2$.

9. Solve the initial value problem $\ddot{y} = \dot{y} + t$, y(0) = 1, y(1) = 2.

10. Find the general solution of the following differential equations:

a) $\ddot{y} - 3\dot{y} = 0$ b) $\ddot{y} + 4\dot{y} + 8y = 0$ c) $3\ddot{y} + 8\dot{y} = 0$

2

d) $4\ddot{y} + 4\dot{y} + y = 0$ e) $\ddot{y} + \dot{y} - 6y = 0$ f) $\ddot{y} + 3\dot{y} + 2y = 0$

11. Consider the equation $\ddot{y} + a\dot{y} + by = 0$ when $a^2/4 - b = 0$, so that that the characteristic equation has a double root r = -a/2. Let $y(t) = u(t)e^{rt}$ and prove that this function is a solution if and only if $\ddot{u} = 0$. Conclude that the general solution is $y = (A + Bt)e^{rt}$.

12. Final Exam in GRA6035 30/05/2011, 3c

Solve the initial value problem (2t + y) - (4y - t)y' = 0, y(0) = 0.

13. Final Exam in GRA6035 10/12/2010, 3c Solve the initial value problem

$$\frac{t}{y^2}y' = \frac{1}{y} - 3t^2, \quad y(1) = \frac{1}{3}$$

Solutions

1 Since the differential equation is linear first order with constant coefficients a = 1/2 and b = 1/4, it has general solution

$$y = \frac{b}{a} + Ce^{-at} = \frac{1}{2} + Ce^{-t/2}$$

Since $y \to 1/2$ when $t \to \infty$ for all values of *C*, the equation is stable (and also globally asymptotically stable), with equilibrium state y = 1/2.

2 Since the differential equations are linear first order, they have general solutions

$$y = \frac{b}{a} + Ce^{-at}$$

This gives

a) $y = 10 + Ce^{-t}$ b) $y = -9 + Ce^{3t}$ c) $y = 20 + Ce^{-5t/4}$

3 Since the first two differential equation are linear first order, they have general solutions

$$y = \frac{b}{a} + Ce^{-at}$$

This gives

a) $y = -5/3 + Ce^{3t}$, and y(0) = 1 gives C = 8/3b) $y = -8 + Ce^{-2t/3}$, and y(0) = 1 gives C = 9

The last equation has integration factor $u = e^{2t}$, and this gives $ye^{2t} = \int t^2 e^{2t} dt$. We solve the integral by using integration by parts twice, and get

$$ye^{2t} = (t^2/2 - t/2 + 1/4)e^{2t} + \mathscr{C} \Rightarrow y = t^2/2 - t/2 + 1/4 + \mathscr{C}e^{-2t}$$

The condition y(0) = 1 gives $\mathscr{C} = 3/4$.

4 See [FMEA] Problem 5.4.6.

5

a) We consider $(2+y) + (2y+t)\dot{y} = 0$ with f = 2+y and g = 2y+t. Since $f'_y = 1 = g'_t$, the equation is exact. We find $h = y^2 + yt + 2t$ satisfy $h'_t = f$ and $h'_y = g$, so the general solution is

$$y^2 + yt + 2t = C \quad \Rightarrow \quad y = \frac{-t \pm \sqrt{t^2 - 8t + 4C}}{2}$$

b) $(2t + y) + y^2 \dot{y} = 0$ with f = 2t + y and $g = y^2$. Since $f'_y = 1$ and $g'_t = 0$, the equation is not exact.

c) $(5yt^4+2)+(t^5+6y^2)\dot{y}=0$ with $f=5yt^4+2$ and $g=t^5+6y^2$. Since $f'_y=5t^4=g'_t$, the equation is exact. We find $h=t^5y+2y^3+2t$ satisfy $h'_t=f$ and $h'_y=g$, so the general solution (in implicit form) is

$$t^5y + 2y^3 + 2t = C$$

It is difficult to find the solution in explicit form in this problem (it is a third degree equation in *y*).

6 The differential equation $2t + 3y^2\dot{y} = 0$ can be written as $3y^2\dot{y} = -2t$, and is therefore separable with solution $y^3 = -t^2 + C$, which gives $y = \sqrt[3]{C-t^2}$. We write f = 2t and $g = 3y^2$; then $h = t^2 + y^3$ has the property that $h'_t = f$ and $h'_y = g$, so the equation is exact with solution $t^2 + y^3 = C$, which again gives $y = \sqrt[3]{C-t^2}$.

7 We solve the differential equation by direct integration:

a) $\ddot{y} = t \implies \dot{y} = \frac{1}{2}t^2 + C_1 \implies y = \frac{1}{6}t^3 + C_1t + C_2$ b) $\ddot{y} = e^t + t^2 \implies \dot{y} = e^t + \frac{1}{3}t^3 + C_1 \implies y = e^t + \frac{1}{12}t^4 + C_1t + C_2$

8 We have $\ddot{y} = t^2 - t \implies \dot{y} = \frac{1}{3}t^3 - \frac{1}{2}t^2 + C_1 \implies y = \frac{1}{12}t^4 - \frac{1}{6}t^3 + C_1t + C_2$. The initial condition y(0) = 1 gives $\frac{1}{12}0^4 - \frac{1}{6}0^3 + C_10 + C_2 = C_2 = 1$, and $\dot{y}(0) = 2$ gives $\frac{1}{3}0^3 - \frac{1}{2}0 + C_1 = C_1 = 2$. The particular solution is therefore

$$y(t) = \frac{1}{12}t^4 - \frac{1}{6}t^3 + 2t + 1$$

9 Substitute $u = \dot{y}$. Then $\ddot{y} = \dot{y} + t \Leftrightarrow \dot{u} = u + t \Leftrightarrow \dot{u} - u = t$. The integrating factor is e^{-t} , and we get

$$ue^{-t} = \int te^{-t}dt = -e^{-t} - te^{-t} + C_1$$

From this we obtain $u = (-e^{-t} - te^{-t} + C_1)e^t = C_1e^t - t - 1$ and we integrate to find *y* from $u = \dot{y}$, and get $y = \int (C_1e^t - t - 1)dt = C_1e^t - t - \frac{1}{2}t^2 + C_2$. The initial condition y(0) = 1 gives $C_1 + C_2 = 1 \implies C_2 = 1 - C_1$, and the condition y(1) = 2 gives $C_1e - 1 - \frac{1}{2} + C_2 = C_1e - 3/2 + 1 - C_1 = 2$. This gives $C_1(e - 1) = 5/2$, or

$$C_1 = \frac{5}{2(e-1)}, \quad C_2 = 1 - \frac{5}{2(e-1)} = \frac{2e-7}{2(e-1)}$$

The particular solution is therefore

$$y(t) = \frac{5}{2(e-1)} \cdot e^{t} - t - \frac{1}{2}t^{2} + \frac{2e-7}{2(e-1)}$$

10

a) The characteristic equation is $r^2 - 3r = 0 \implies r = 0, 3 \implies y(t) = C_1 + C_2 e^{3t}$.

6

- b) Characteristic equation is $r^2 + 4r + 8 = 0$. This has no real solutions. Thus we put $\alpha = -\frac{1}{2}a = -\frac{1}{2}4 = -2, \beta = \sqrt{b \frac{1}{4}a^2} = \sqrt{8 \frac{1}{4}4^2} = 2$. From this the general solution is $y(t) = e^{\alpha t} (A \cos \beta t + B \sin \beta t) = e^{-2t} (A \cos 2t + B \sin 2t)$.
- c) $3\ddot{y}+8\dot{y}=0 \iff \ddot{y}+\frac{8}{3}\dot{y}=0$. The characteristic equation is $r^2+\frac{8}{3}r=0 \implies r=0$ or $r=-\frac{8}{3}$. The general solution is $y(t)=C_1e^{0t}+C_2e^{-\frac{8}{3}t}=C_1+C_2e^{-\frac{8}{3}t}$.
- d) $4\ddot{y}+4\dot{y}+\dot{y}=0$ has characteristic equation $4r^2+4r+1=0$. There is one solution $r=-\frac{1}{2}$. The general solution is $y(t)=(C_1+C_2t)e^{-\frac{1}{2}t}$.
- e) $\ddot{y} + \dot{y} 6y = 8$ has characteristic equation $r^2 + r 6 = 0$. It has the solutions r = -3 and r = 2. The general solution is thus

$$y(t) = C_1 e^{-3t} + C_2 e^{2t}$$

f) $\ddot{y} + 3\dot{y} + 2y = 0$ has characteristic equation $r^2 + 3r + 2 = 0$. The solutions are r = -1 and r = -2. The general solution is thus

$$y(t) = C_1 e^{-t} + C_2 e^{-2t}$$

11 $y = ue^{rt} \implies \dot{y} = \dot{u}e^{rt} + ure^{rt} = e^{rt}(\dot{u} + ur) \implies \ddot{y} = \ddot{u}e^{rt} + \dot{u}re^{rt} + r(\dot{u}e^{rt} + ure^{rt}) = e^{rt}(\ddot{u} + 2r\dot{u} + ur^2)$. From this we get

$$\ddot{y} + a\dot{y} + by = e^{rt}[(\ddot{u} + 2r\dot{u} + ur^2) + a(\dot{u} + ur) + bu]$$

= $e^{rt}[\ddot{u} + (2r + a)\dot{u} + (r^2 + ar + b)u]$

The characteristic equation is assumed to have one solution $r = \frac{-a}{2}$. Putting $r = \frac{-a}{2}$ into the expression we get

$$\ddot{y} + a\dot{y} + by = e^{rt}\dot{u}$$

So $y = ue^{rt}$ is a solution if and only if $e^{rt}\ddot{u} = 0 \Leftrightarrow \ddot{u} = 0$. The differential equation $\ddot{u} = 0$ has the general solution u = A + Bt. Thus $y = (A + Bt)e^{rt}$ is the general solution of $\ddot{y} + a\dot{y} + by = 0$.

12 The differential equation can be written in the form

$$(2t + y) + (t - 4y)y' = 0$$

and we see that it is exact. Hence its solution can be written in the form u(y,t) = C, where u(y,t) is a function that satisfies

$$\frac{\partial u}{\partial t} = 2t + y$$
 and $\frac{\partial u}{\partial y} = t - 4y$

One solution is $u(y,t) = t^2 + ty - 2y^2$, and the initial condition y(0) = 0 gives C = 0. Hence

$$t^2 + ty - 2y^2 = 0 \quad \Leftrightarrow \quad y = \frac{-t \pm 3t}{-4}$$

The solution to the initial value problem is therefore

$$y = -\frac{1}{2}t \text{ or } y = t$$

13 The differential equation can be written in the form

$$\left(3t^2 - \frac{1}{y}\right) + \frac{t}{y^2}y' = 0$$

and we see that it is exact. Hence it can be written of the form u(y,t) = C, where u(y,t) is a function that satisfies

$$\frac{\partial u}{\partial t} = 3t^2 - \frac{1}{y}$$
 and $\frac{\partial u}{\partial y} = \frac{t}{y^2}$

One solution is $u(y,t) = t^3 - t/y$, and this gives

$$t^3 - \frac{t}{y} = C \quad \Leftrightarrow \quad y = \frac{t}{t^3 - C}$$

The initial condition gives 1/(1-C) = 1/3 or C = -2. The solution to the initial value problem is therefore

$$y = \frac{t}{t^3 + 2}$$