

Mock Exam:	GRA 60353	Mathematics	
Examination date:	December 2012		Total no. of pages: 2
Permitted examination	A bilingual dictionary and BI-approved calculator TEXAS		
support material:	INSTRUMENTS BA II Plus		
Answer sheets:	Squares		
	Counts 80% of C	GRA 6035	The subquestions are weighted equally
			Responsible department: Economics

QUESTION 1.

We consider the matrix A given by

$$A = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$

- (a) Compute the determinant and rank of A.
- (b) Compute all eigenvalues of A. Is A diagonalizable?

QUESTION 2.

We consider the function f with parameter h, given by $f(x, y; h) = hx^4 + y^4 + 4x^2 - (6+h)xy + 4y^2 - 3h$. The function f is defined for all points $(x, y) \in \mathbb{R}^2$.

- (a) Compute the Hessian matrix of f, and show that f is convex when h = 0. Then determine all values of h such that f is convex.
- (b) Find the global minimum of f when h = 0.
- (c) Will the global minimum value $f^*(h)$ increase or decrease when the value of the parameter h changes from h = 0 to a small positive value?

QUESTION 3.

Solve the following difference and differential equations:

- (a) $y_{t+2} 5y_{t+1} + 4y_t = 2^t$ (b) $y' = t(y-1)^2$, y(0) = 3(c) $(2y e^t)y' = ye^t + 2e^{2t}$, y(0) = 2

QUESTION 4.

We consider the optimization problem

max
$$x + 2y + 2z$$
 subject to
$$\begin{cases} x^2 + y^2 + z^2 \le 4\\ x \ge 0\\ y \ge 0\\ z \ge 0 \end{cases}$$

Sketch the set of admissible points, and solve the optimization problem.

QUESTION 5.

Let $a, b \in \mathbb{R}$ be parameters with $a \neq 0$, and consider the matrix A given by

$$A = \begin{pmatrix} b & a & a & a \\ a & b & a & a \\ a & a & b & a \\ a & a & a & b \end{pmatrix}$$

Show that $\lambda = b - a$ is an eigenvalue of A, and find its multiplicity. Use this to find det(A).