Mock Exam:	GRA 60353 Mathematics	
Examination date:	December 2012	Total no. of pages: 2
Permitted examination	A bilingual dictionary and BI-approved calculator TEXAS	
support material:	INSTRUMENTS BA II Plus	
Answer sheets:	Squares	
	Counts 80% of GRA 6035	The subquestions are weighted equally
		Responsible department: Economics

Question 1.

We consider the matrix A given by

$$
A=\left(\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right)
$$

(a) Compute the determinant and rank of A.
(b) Compute all eigenvalues of A. Is A diagonalizable?

Question 2.

We consider the function f with parameter h, given by $f(x, y ; h)=h x^{4}+y^{4}+4 x^{2}-(6+h) x y+4 y^{2}-3 h$. The function f is defined for all points $(x, y) \in \mathbb{R}^{2}$.
(a) Compute the Hessian matrix of f, and show that f is convex when $h=0$. Then determine all values of h such that f is convex.
(b) Find the global minimum of f when $h=0$.
(c) Will the global minimum value $f^{*}(h)$ increase or decrease when the value of the parameter h changes from $h=0$ to a small positive value?

Question 3.

Solve the following difference and differential equations:
(a) $y_{t+2}-5 y_{t+1}+4 y_{t}=2^{t}$
(b) $y^{\prime}=t(y-1)^{2}, \quad y(0)=3$
(c) $\left(2 y-e^{t}\right) y^{\prime}=y e^{t}+2 e^{2 t}, \quad y(0)=2$

Question 4.

We consider the optimization problem

$$
\max x+2 y+2 z \text { subject to }\left\{\begin{array}{l}
x^{2}+y^{2}+z^{2} \leq 4 \\
x \geq 0 \\
y \geq 0 \\
z \geq 0
\end{array}\right.
$$

Sketch the set of admissible points, and solve the optimization problem.

Question 5.

Let $a, b \in \mathbb{R}$ be parameters with $a \neq 0$, and consider the matrix A given by

$$
A=\left(\begin{array}{llll}
b & a & a & a \\
a & b & a & a \\
a & a & b & a \\
a & a & a & b
\end{array}\right)
$$

Show that $\lambda=b-a$ is an eigenvalue of A, and find its multiplicity. Use this to find $\operatorname{det}(A)$.

