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Question 1.

(a) We compute the determinant of A using cofactor expansion along the first column, and find
that

det(A) =

∣∣∣∣∣∣∣∣∣
4 1 1

1 4 1

1 1 4

∣∣∣∣∣∣∣∣∣ = 4 · 15− 1 · 3 + 1 · (−3) = 54

Since det(A) 6= 0, we have that rk(A) = 3.
(b) The characteristic equation of A is given by

det(A− λI) =

∣∣∣∣∣∣∣∣∣
4− λ 1 1

1 4− λ 1

1 1 4− λ

∣∣∣∣∣∣∣∣∣ = 0

We see that λ = 3 is a solution, so λ = 3 is an eigenvalue of A. To find all eigenvalues, we
develope the determinant along the first column, and get∣∣∣∣∣∣∣∣∣

4− λ 1 1

1 4− λ 1

1 1 4− λ

∣∣∣∣∣∣∣∣∣ = (4− λ)((4− λ)2 − 1)− 1(3− λ) + 1(λ− 3)

Since we know that λ = 3 is an eigenvalue, we compute the first part of the expression and
factorize with (λ− 3) as a factor:

(4− λ)(λ2 − 8λ+ 15) + 2(λ− 3) = (4− λ)(λ− 3)(λ− 5) + 2(λ− 3) = 0

This gives λ = 3 or (4 − λ)(λ − 5) + 2 = −λ2 + 9λ − 18 = 0, so the eigenvalues of A
are λ1 = 3, λ2 = 3, λ3 = 6. Alternatively, we may use some elementary row operations to
simplify this determinant:∣∣∣∣∣∣∣∣∣

4− λ 1 1

1 4− λ 1

1 1 4− λ

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
0 λ− 3 1− (4− λ)2

0 3− λ −3 + λ

1 1 4− λ

∣∣∣∣∣∣∣∣∣ = 0

Cofactor expansion along the first column gives 1 ·
(
(λ− 3)2 − (3− λ)(1− (4− λ)2)

)
= 0, or

(λ− 3)(λ− 3 + 1− 16 + 8λ− λ2) = (λ− 3)(−λ2 + 9λ− 18) = 0



Also using this method, we find eigenvalues λ = 3 (with multiplicity two) and λ = 6. The
matrix A is diagonalizable since it is symmetric.

Question 2.

(a) We compute the partial derivatives and the Hessian matrix of f :f ′x
f ′y

 =

4hx3 + 8x− (6 + h)y

4y3 − (6 + h)x+ 8y

 , f ′′ =

12hx2 + 8 −(6 + h)

−(6 + h) 12y2 + 8


We see that the leading principal minors are given by D1 = 12hx2 + 8 and D2 = 144hx2y2 +
96hx2+96y2+64−(6+h)2. Hence D1 ≥ 0 for all (x, y) if and only if h ≥ 0. Moreover, if h ≥ 0,
then D2 ≥ 0 for all (x, y) if and only if 64− (6 + h)2 ≥ 0, which means that h ≤ 2. Since we
can have D2 = 0 (for h = 2), we also check the remaining principal minor ∆1 = 12y2 + 8 ≥ 0.
We conclude that f is convex if and only if 0 ≤ h ≤ 2. In particular, f is convex if h = 0.

(b) When h = 0, f is convex and therefore a point (x, y) is a global minimum if and only if it is
a stationary point. We compute the stationary points, which are given by the equations

8x− 6y = 0, 4y3 − 6x+ 8y = 0

The first equation gives that x = 3y/4, and the second equation becomes

4y3 − 9y/2 + 8y = y(4y2 + 7/2) = 0 ⇔ y = 0

since 4y2+7/2 = 0 has no solutions. The stationary points are therefore given by (x, y) = (0,0)
when h = 0, and this is the global minimum, with minimum value f(0, 0; 0) = 0.

(c) Let h = 0. By the Envelope Theorem, we have that

d

dh
f∗(h) =

∂f

∂h

∣∣∣
(x,y)=(0,0)

= (x4 − xy − 3)
∣∣
(x,y)=(0,0)

= −3 < 0

Since the derivative is negative, the minimum value will decrease when h increases from
h = 0 to small positive values of h.

Question 3.

(a) The homogeneous equation yt+2−5yt+1+4yt = 0 has characteristic equation r2−5r+4 = 0, and
therefore roots r = 1, 4. Hence the homogeneous solution is yh(t) = C11

t+C2 ·4t = C1+C2 ·4t.
To find a particular solution of yt+2−5yt+1+4yt = 2t, we try yt = A·2t. This gives yt+1 = 2A·2t
and yt+2 = 4A ·2t, and substitution in the equation gives (4A−10A+4A)2t = 2t, or −2A = 1.
Hence A = −1/2 is a solution, and yp(t) = −1

2 · 2
t = −2t−1 is a particular solution. This gives

general solution

yt = C1 + C2 · 4t − 2t−1

(b) The differential equation y′ = t(y − 1)2 is separable, and can be written as

1

(y − 1)2
y′ = t ⇒ − 1

y − 1
=
t2

2
+ C

The initial condition y(0) = 3 gives −1/2 = C. To write the solution in explicit form, we see
that

1

y − 1
= − t

2

2
+

1

2
= −1

2
(t2 − 1) ⇒ y − 1 = − 2

t2 − 1
=

2

1− t2

This gives the solution

y = 1 +
2

1− t2
=

3− t2

1− t2

2



(c) The differential equation (2y−et)y′ = yet+2e2t can be written as −yet−2e2t+(2y−et)y′ = 0.
We look for a function h(t, y) such that the differential equation has the form

∂h/∂t+ ∂h/∂y · y′ = 0 ⇒

{
∂h/∂t = −yet − 2e2t

∂h/∂y = 2y − et

From the first equation, we see that h = −yet − e2t + C(y), and derivation with respect to y
gives −et+C ′(y) = 2y− et by comparison with the second equation. So the equation is exact,
and C ′(y) = 2y has solution C(y) = y2, and h(t, y) = y2 − ety − e2t. The general solution
of the differential equation is therefore y2 − ety − e2t = C, and the initial condition y(0) = 2
gives 4− 2− 1 = C, or C = 1. Finally, the solution is

y2 − ety − e2t = 1 ⇒ y =
et ±

√
e2t+ 4(e2t + 1)

2
=

et +
√
5e2t + 4

2

by the abc-formula, where we choose the root satsifying y(0) = 2.

Question 4.

We rewrite the last three constraints as −x,−y,−z ≤ 0, and write the Lagrangian for this problem
as

L = x+ 2y + 2z − λ(x2 + y2 + z2) + ν1x+ ν2y + ν3z

The Kuhn-Tucker conditions for this problem are the first order conditions

L′x = 1− λ · 2x+ ν1 = 0

L′y = 2− λ · 2y + ν2 = 0

L′x = 2− λ · 2z + ν3 = 0

the constraints x2 + y2 + z2 ≤ 4 and x, y, z ≥ 0, and the complementary slackness conditions λ ≥ 0,
ν1, ν2, ν3 ≥ 0 and

λ(x2 + y2 + z2 − 4) = ν1x = ν2y = ν3z = 0

Let us find all solutions of the Kuhn-Tucker conditions: If λ = 0, then 1 + ν1 = 0 by the first FOC,
and this is impossible since ν1 ≥ 0. Hence λ > 0 and x2 + y2 + z2 = 4. We solve the FOC’s for x, y, z
and get

x =
1 + ν1

2λ
, y =

2 + ν2
2λ

, z =
2 + ν3

2λ
In particular, x, y, z > 0 since ν1, ν2, ν3 ≥ 0, and therefore we must have ν1 = ν2 = ν3 = 0 and
x = 1

2λ , y = z = 2
2λ . When we substitute this in the first constraint, we get

1

4λ2
(12 + 22 + 22) = 4 ⇒ λ = ±3

4
=

3

4

We conclude that there is a unique solution of the Kuhn-Tucker conditions:

(x, y, z;λ, ν1, ν2, ν3) =

(
2

3
,
4

3
,
4

3
;
3

4
, 0, 0, 0

)
with f = 18/3, and this is the candidate for maximum. We see that

L(x, y, z; 3/4, 0, 0, 0) = x+ 2y + 2z − 3

4
(x2 + y2 + z2) ⇒ L′′ =


−3/2 0 0

0 −3/2 0

0 0 −3/2


Hence L is concave, and (x, y, z) = (2/3, 4/3, 4/3) is max. Alternatively, we see that the set of
admissible points is bounded, since x2 + y2 + z2 ≤ 4 gives x, y, z ≤ 2. So there is a maximum by
the Extreme Value Theorem, and the maximum must be obtained either at (2/3, 4/3, 4/3) or at an

3



admissible point where NDCQ is not satisfied. To consider the NDCQ condition, we compute the
matrix of partial derivatives of the constraints, and get the matrix

2x 2y 2z

−1 0 0

0 −1 0

0 0 −1


Clearly, not all four constraints can be simultaneously binding. In case one, two or three of the
constraints are binding, the corresponding rows in the matrix are clearly independent (that is, the
rank is equal to the number of rows), as we can see case by case. Hence the NDCQ holds for all
admissible points, and the maximum is (x, y, z) = (2/3, 4/3, 4/3) with f = 18/3.

Question 5.

When λ = b− a, the matrix A− λI is given by

A− (b− a)I =


a a a a

a a a a

a a a a

a a a a


It has rank one since a 6= 0. Therefore, the linear system (A − (b − a)I)x = 0 has three degrees of
freedom, and λ = b− a is an eigenvalue of multiplicity at least three. We compute the trace of A to
be 4b. If λ = b− a had multiplicity four, then the trace of A would be given by

tr(A) = λ1 + λ2 + λ3 + λ4 = 4(b− a)

But 4(b − a) 6= 4b since a 6= 0, so this is not possible, and it follows that λ = b − a has multiplicity
three. The fourth eigenvalue λ is given by

tr(A) = λ1 + λ2 + λ3 + λ4 = 3(b− a) + λ = 4b ⇒ λ = b+ 3a

The determianant is therefore

det(A) = λ1 · λ2 · λ3 · λ4 = (b− a)3 · (b + 3a)
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