| Solutions: | GRA 60352 | Mathematics |
| :--- | :--- | :--- | :--- | :--- |

Correct answers: C-B-B-A-C-D-C-C

Question 1.

We reduce the augmented matrix to echelon form after interchanging the rows:

$$
\left(\begin{array}{cccc|c}
1 & -1 & -2 & 4 & 7 \\
0 & 2 & -3 & 1 & 4 \\
-2 & 8 & -5 & -5 & -2
\end{array}\right) \xrightarrow{-\rightarrow}\left(\begin{array}{cccc|c}
1 & -1 & -2 & 4 & 7 \\
0 & 2 & -3 & 1 & 4 \\
0 & 6 & -9 & 3 & 12
\end{array}\right) \xrightarrow{ } \quad\left(\begin{array}{cccc|c}
1 & -1 & -2 & 4 & 7 \\
0 & 2 & -3 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

From the pivot positions, we see that the system has two degrees of freedom. The correct answer is alternative \mathbf{C}.

Question 2.

We form the matrix with the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ as columns, and compute its rank. We see that it is the transpose of the coefficient matrix in Question 1, hence it has rank two. The determinant

$$
\left|\begin{array}{cc}
0 & -2 \\
2 & 8
\end{array}\right|=-4 \neq 0
$$

shows that the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ are linearly independent, and \mathbf{v}_{3} is a linear combination of these vectors since the rank is two. Hence the correct answer is alternative \mathbf{B}.

Question 3.

We reduce the matrix A to an echelon form:

$$
\left(\begin{array}{ccccc}
0 & 2 & -3 & h & 4 \\
-2 & 8 & -5 & -5 & -2 \\
1 & -1 & -2 & 4 & 7
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
0 & 0 & 0 & h-1 & 0 \\
0 & 6 & -9 & 3 & 12 \\
1 & -1 & -2 & 4 & 7
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & -1 & -2 & 4 & 7 \\
0 & 6 & -9 & 3 & 12 \\
0 & 0 & 0 & h-1 & 0
\end{array}\right)
$$

We see that the rank of A is three if $h \neq 1$, and two if $h=1$. The correct answer is alternative \mathbf{B}.

Question 4.

The characteristic equation of A is $\lambda^{2}+\lambda-12=0$, and therefore that it has eigenvalues $\lambda=3$ and $\lambda=-4$. The correct answer is alternative \mathbf{A}.

Question 5.

We see that $A \mathbf{u}=-4 \mathbf{u}$ while $A \mathbf{v} \neq \lambda \mathbf{v}$ for any λ. The correct answer is alternative \mathbf{C}.

Question 6.

The symmetric matrix of the quadratic form $Q\left(x_{1}, x_{2}\right)=h x_{1}^{2}-4 x_{1} x_{2}+3 x_{2}^{2}$ is

$$
A=\left(\begin{array}{cc}
h & -2 \\
-2 & 3
\end{array}\right)
$$

The leading principal minors are $D_{1}=h$ and $D_{2}=3 h-4$. If $h>4 / 3$, then $D_{1}, D_{2}>0$ and Q is positive definite. If $h=4 / 3$, then $D_{1}=4 / 3>0$ and $D_{2}=0$, with $\Delta_{1}=4 / 3,3 \geq 0$, and Q is positive semidefinit. If $h<4 / 3$, then $D_{2}<0$ and Q is indefinite. The correct answer is alternative \mathbf{D}.

Question 7.

We compute the Hessian matrix of $f(x, y)=x^{4}+x^{2}-2 x y+h y^{2}$ and find

$$
H(f)=\left(\begin{array}{cc}
12 x^{2}+2 & -2 \\
-2 & 2 h
\end{array}\right)
$$

The principal minors of order one are all equal to $12 x^{2}+2,2 h$, and $D_{2}=24 h x^{2}+4 h-4$. If $h>1$, then $D_{1}, D_{2}>0$ and f is convex. If $h=1$, then $D_{2}=0$ and $\Delta_{1} \geq 0$, so f is convex. If $h<1$, then $D_{2}<0$ and f is neither convex nor concave. The correct answer is alternative \mathbf{C}.

Question 8.

The set S defined by $x^{2}-y^{2}+z^{2} \leq 1$ and $x, y, z \geq 0$ is clearly closed, but it is not bounded since $(0, a, 0)$ lies in S for any value $a \geq 0$ since $-a^{2} \leq 1$. The value $f(0, a, 0)=2 a \rightarrow \infty$ when $a \rightarrow \infty$, so f does not have a maximum on S. The correct answer is alternative \mathbf{C}.

