BI

Correct answers: A-A-C-B-C-C-C-X

Question 1.

We reduce the augmented matrix to echelon form:

$$
\left(\begin{array}{llll|l}
1 & 2 & 3 & 4 & 0 \\
0 & 1 & 1 & 1 & 3 \\
1 & 0 & 1 & 2 & 1
\end{array}\right) \xrightarrow{ } \quad\left(\begin{array}{cccc|c}
1 & 2 & 3 & 4 & 0 \\
0 & 1 & 1 & 1 & 3 \\
0 & -2 & -2 & -2 & 1
\end{array}\right) \xrightarrow{ } \quad\left(\begin{array}{llll|l}
1 & 2 & 3 & 4 & 0 \\
0 & 1 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & 7
\end{array}\right)
$$

From the pivot positions, we see that the system is inconsistent. The correct answer is alternative \mathbf{A}.

Question 2.

We form the matrix A with the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ as columns, and compute its determinant:

$$
\left|\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 4 \\
1 & 3 & 0
\end{array}\right|=1(0-12)+1(0-2)=-12-2=-14 \neq 0
$$

Therefore, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent. Hence the correct answer is alternative A.

Question 3.

We reduce the matrix A to an echelon form:

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 2 \\
6 & 6 & t
\end{array}\right) \xrightarrow{ }\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -3 & 0 \\
0 & -6 & t-6
\end{array}\right) \xrightarrow{ }\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -3 & 0 \\
0 & 0 & t-6
\end{array}\right)
$$

We see that the rank of A is three if $t \neq 6$, and two if $t=6$. The correct answer is alternative \mathbf{C}.

Question 4.

The characteristic equation of A is $\lambda^{2}-5 \lambda+4=0$, and therefore that it has eigenvalues $\lambda=4$ and $\lambda=1$. The correct answer is alternative \mathbf{B}.

Question 5.

The eigenvalues of A are $\lambda=1$ (with multiplicity two) and $\lambda=3$, since we have

$$
\operatorname{det}(A-\lambda I)=\left(\begin{array}{ccc}
1-\lambda & s+1 & s \\
0 & 1-\lambda & 4 \\
0 & 0 & 3-\lambda
\end{array}\right)=(1-\lambda)^{2}(3-\lambda)=0
$$

We compute the eigenvectors of $\lambda=1$, the eigenvalue of multiplicity 2 , by reducing the matrix $A-I$ to an echelon form:

$$
\left(\begin{array}{ccc}
0 & s+1 & s \\
0 & 0 & 4 \\
0 & 0 & 2
\end{array}\right) \xrightarrow{-\longrightarrow}\left(\begin{array}{ccc}
0 & s+1 & s \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{0}\left(\begin{array}{ccc}
0 & s+1 & 0 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right)
$$

We see that there are two degrees of freedom for $s=-1$, and one degree of freedom for $s \neq-1$. Therefore, A is diagonalizable for $s=-1$ and not diagonalizable otherwise. The correct answer is alternative \mathbf{C}.

Question 6.

The symmetric matrix of the quadratic form $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-4 x_{1} x_{2}+2 x_{2}^{2}-3 x_{3}^{2}$ is

$$
A=\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 2 & 0 \\
0 & 0 & -3
\end{array}\right)
$$

The leading principal minors are $D_{1}=1, D_{2}=-2$ and $D_{3}=6$. Since $D_{2}<0, A$ is indefinite, and the correct answer is alternative \mathbf{C}.

Question 7.

We compute the Hessian matrix of $f(x, y, z)=2 x^{2}+h y^{3}+3 z^{4}$: First, we compute the first order partial derivatives

$$
f_{x}^{\prime}=4 x, f_{y}^{\prime}=3 h y^{2}, f_{z}^{\prime}=12 z^{3}
$$

and then we compute the second order partial derivatives and form the Hessian matrix

$$
H(f)=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 6 h y & 0 \\
0 & 0 & 36 z^{2}
\end{array}\right)
$$

The principal minors of order one are all equal to $4,6 h y, 36 z^{2}$. If $h \neq 0$, then $6 h y$ can be both positiv and negative, and it follows that f is not convex for $h \neq 0$. If $h=0$, then all principal minors $\Delta_{k} \geq 0$, hence f is convex. The correct answer is alternative \mathbf{C}.

Question 8.

The problem stated: Consider the subset $S=\left\{(x, y): x \leq y \leq x^{2}\right.$ and $\left.0 \leq x \leq 1\right\}$ of \mathbb{R}^{2}, the region bounded by the graphs of $y=x^{2}$ and $y=x$ on $0 \leq x \leq 1$. This was a misprint, the inequality was supposed to be $x^{2} \leq y \leq x$ and not $x \leq y \leq x^{2}$. When $0<x<1$, the graph of $y=x$ lies over the graph of $y=x^{2}$.

Using the inequalities $x^{2} \leq y \leq x$ that were intended, or by interpreting the text the region bounded by the graphs of $y=x^{2}$ and $y=x$ on $0 \leq x \leq 1$, we would end up with the region showed in the figure below.

In this case, the set S would be closed, bounded and convex, and the correct answer would be alternative \mathbf{A}.

On the other hand, using the inequalities $x \leq y \leq x^{2}$ as they were printed in the problem, one would end up with the region consisting only of the end-points $(0,0)$ and $(1,1)$, since $x \leq y \leq x^{2}$ has no solutions when $0<x<1$. In this case, S would be closed and bounded, but not convex, and the correct answer would be alternative \mathbf{B}.

