

Solutions:	GRA 60352	Mathematics		
Examination date:	12.10.2012	14:00 - 15:00	Total no. of pages:	2
			No. of attachments:	0
Permitted examination	A bilingual dictionary and BI-approved calculator TEXAS			
support material:	INSTRUMENTS BA II Plus			
Answer sheets:	Answer sheet for multiple-choice examinations			
	Counts 20% of	of GRA 6035	The questions are we	eighted equally
Ordinary exam			Responsible departm	ent: Economics

Correct answers: A-A-C-B-C-C-C-X

QUESTION 1.

We reduce the augmented matrix to echelon form:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & | & 0 \\ 0 & 1 & 1 & 1 & | & 3 \\ 1 & 0 & 1 & 2 & | & 1 \end{pmatrix} \quad \stackrel{- \rightarrow}{\longrightarrow} \quad \begin{pmatrix} 1 & 2 & 3 & 4 & | & 0 \\ 0 & 1 & 1 & 1 & | & 3 \\ 0 & -2 & -2 & -2 & | & 1 \end{pmatrix} \quad \stackrel{- \rightarrow}{\longrightarrow} \quad \begin{pmatrix} 1 & 2 & 3 & 4 & | & 0 \\ 0 & 1 & 1 & 1 & | & 3 \\ 0 & 0 & 0 & 0 & | & 7 \end{pmatrix}$$

From the pivot positions, we see that the system is inconsistent. The correct answer is alternative A.

QUESTION 2.

We form the matrix A with the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ as columns, and compute its determinant:

$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 4 \\ 1 & 3 & 0 \end{vmatrix} = 1(0 - 12) + 1(0 - 2) = -12 - 2 = -14 \neq 0$$

Therefore, the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent. Hence the correct answer is alternative **A**.

QUESTION 3.

We reduce the matrix A to an echelon form:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 6 & 6 & t \end{pmatrix} \xrightarrow{- \to -} \begin{pmatrix} 1 & 2 & 1 \\ 0 & -3 & 0 \\ 0 & -6 & t - 6 \end{pmatrix} \xrightarrow{- \to -} \begin{pmatrix} 1 & 2 & 1 \\ 0 & -3 & 0 \\ 0 & 0 & t - 6 \end{pmatrix}$$

We see that the rank of A is three if $t \neq 6$, and two if t = 6. The correct answer is alternative **C**.

QUESTION 4.

The characteristic equation of A is $\lambda^2 - 5\lambda + 4 = 0$, and therefore that it has eigenvalues $\lambda = 4$ and $\lambda = 1$. The correct answer is alternative **B**.

QUESTION 5.

The eigenvalues of A are $\lambda = 1$ (with multiplicity two) and $\lambda = 3$, since we have

$$\det(A - \lambda I) = \begin{pmatrix} 1 - \lambda & s + 1 & s \\ 0 & 1 - \lambda & 4 \\ 0 & 0 & 3 - \lambda \end{pmatrix} = (1 - \lambda)^2 (3 - \lambda) = 0$$

We compute the eigenvectors of $\lambda = 1$, the eigenvalue of multiplicity 2, by reducing the matrix A - I to an echelon form:

$$\begin{pmatrix} 0 & s+1 & s \\ 0 & 0 & 4 \\ 0 & 0 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & s+1 & s \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & s+1 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}$$

We see that there are two degrees of freedom for s = -1, and one degree of freedom for $s \neq -1$. Therefore, A is diagonalizable for s = -1 and not diagonalizable otherwise. The correct answer is alternative **C**.

QUESTION 6.

The symmetric matrix of the quadratic form $Q(x_1, x_2, x_3) = x_1^2 - 4x_1x_2 + 2x_2^2 - 3x_3^2$ is

$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

The leading principal minors are $D_1 = 1$, $D_2 = -2$ and $D_3 = 6$. Since $D_2 < 0$, A is indefinite, and the correct answer is alternative C.

QUESTION 7.

We compute the Hessian matrix of $f(x, y, z) = 2x^2 + hy^3 + 3z^4$: First, we compute the first order partial derivatives

$$f'_x = 4x, \ f'_y = 3hy^2, \ f'_z = 12z^3$$

and then we compute the second order partial derivatives and form the Hessian matrix

$$H(f) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 6hy & 0 \\ 0 & 0 & 36z^2 \end{pmatrix}$$

The principal minors of order one are all equal to $4, 6hy, 36z^2$. If $h \neq 0$, then 6hy can be both positiv and negative, and it follows that f is not convex for $h \neq 0$. If h = 0, then all principal minors $\Delta_k \ge 0$, hence f is convex. The correct answer is alternative **C**.

QUESTION 8.

The problem stated: Consider the subset $S = \{(x, y) : x \le y \le x^2 \text{ and } 0 \le x \le 1\}$ of \mathbb{R}^2 , the region bounded by the graphs of $y = x^2$ and y = x on $0 \le x \le 1$. This was a misprint, the inequality was supposed to be $x^2 \le y \le x$ and not $x \le y \le x^2$. When 0 < x < 1, the graph of y = x lies over the graph of $y = x^2$.

Using the inequalities $x^2 \le y \le x$ that were intended, or by interpreting the text *the region bounded* by the graphs of $y = x^2$ and y = x on $0 \le x \le 1$, we would end up with the region showed in the figure below.

In this case, the set S would be closed, bounded and convex, and the correct answer would be alternative **A**.

On the other hand, using the inequalities $x \le y \le x^2$ as they were printed in the problem, one would end up with the region consisting only of the end-points (0,0) and (1,1), since $x \le y \le x^2$ has no solutions when 0 < x < 1. In this case, S would be closed and bounded, but not convex, and the correct answer would be alternative **B**.