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QUESTION 1.

We reduce the augmented matrix to echelon form:

1 2 3 4]0 1 2 3 410 1 2 3 4]0
011 13 - 0 1 1 113 -2 011 13
1 01 2|1 0 -2 -2 =21 000 07

From the pivot positions, we see that the system is inconsistent. The correct answer is alternative A.

QUESTION 2.

We form the matrix A with the vectors vi,vs, vy as columns, and compute its determinant:

101
0 2 4/=10-12)+1(0-2)=—-12-2=—14#£0
130

Therefore, the vectors vy, va, vy are linearly independent. Hence the correct answer is alternative A.

QUESTION 3.

We reduce the matrix A to an echelon form:

1 21 1 2 1 1 2 1
A=12 1 2 - 0 -3 0 -2 0 -3 0
6 6 ¢ 0 -6 t—-6 0 0 t—6

We see that the rank of A is three if ¢ # 6, and two if £ = 6. The correct answer is alternative C.
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QUESTION 4.

The characteristic equation of A is A> — 5\ 4+ 4 = 0, and therefore that it has eigenvalues A\ = 4 and
A = 1. The correct answer is alternative B.

QUESTION 5.

The eigenvalues of A are A = 1 (with multiplicity two) and A = 3, since we have
1-X s+1 S
det(A-M)=| 0 1-Xx 4 [=01-N*B-N=0
0 0 3—A

We compute the eigenvectors of A = 1, the eigenvalue of multiplicity 2, by reducing the matrix A — I
to an echelon form:

0 s+1 s 0 s+1 s 0 s+1 0
0O 0 4 - 0 0 4 - 0 0 4
0O 0 2 0O 0 0 0o 0 0
We see that there are two degrees of freedom for s = —1, and one degree of freedom for s # —1.
Therefore, A is diagonalizable for s = —1 and not diagonalizable otherwise. The correct answer is
alternative C.
QUESTION 6.

The symmetric matrix of the quadratic form Q(x1, 29, z3) = 23 — 4x129 + 223 — 323 is

1 =2 0
A=1-2 2 0
0o 0 -3

The leading principal minors are Dy = 1, Dy = —2 and D3 = 6. Since Dy < 0, A is indefinite, and
the correct answer is alternative C.

QUESTION 7.

We compute the Hessian matrix of f(z,y,2) = 222 + hy® + 32z*: First, we compute the first order
partial derivatives

fo =4z, fy=3hy?, fl.=122°

and then we compute the second order partial derivatives and form the Hessian matrix

4 0 0
H(f)=10 6hy 0
0 0 3622

The principal minors of order one are all equal to 4, 6hy, 3622, If h # 0, then 6hy can be both positiv
and negative, and it follows that f is not convex for h # 0. If h = 0, then all principal minors Ag > 0,
hence f is convex. The correct answer is alternative C.

2



QUESTION 8.

The problem stated: Consider the subset S = {(z,y) : 2 <y < 2? and 0 < z < 1} of R?, the region
bounded by the graphs of y = 22 and y = 2 on 0 < x < 1. This was a misprint, the inequality was
supposed to be z2 < y < z and not x < y < 22. When 0 < z < 1, the graph of y = z lies over the
graph of y = 2.

Using the inequalities 22 < y < z that were intended, or by interpreting the text the region bounded
by the graphs of y = 22 and y = x on 0 < x < 1, we would end up with the region showed in the
figure below.
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In this case, the set S would be closed, bounded and convex, and the correct answer would be
alternative A.

On the other hand, using the inequalities < y < 22 as they were printed in the problem, one would
end up with the region consisting only of the end-points (0,0) and (1, 1), since z < y < 22 has no
solutions when 0 < z < 1. In this case, S would be closed and bounded, but not convex, and the
correct answer would be alternative B.
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