

Written examination:	GRA 60353	Mathematics	
Examination date:	11.06.2013	09:00 - 12:00	Total no. of pages: 2
Permitted examination	A bilingual dictionary and BI-approved calculator TEXAS		
support material:	INSTRUMENTS BA II Plus		
Answer sheets:	Squares		
	Counts 80%	of GRA 6035	The subquestions have equal weight
Re-sit exam			Responsible department: Economics

QUESTION 1.

We consider the matrix A given by

$$A = \begin{pmatrix} 2 & 4 & s \\ -4 & -6 & -3 \\ s & s & 1 \end{pmatrix}$$

- (a) Compute the determinant and rank of A.
- (b) Compute all eigenvalues of A when s = 0. Is A diagonalizable when s = 0?

QUESTION 2.

We consider the function $f(x, y; a) = xy^2 + 5x^3y - a^2xy$ with parameter a defined for all points $(x, y) \in \mathbb{R}^2$. We assume that a > 0.

- (a) Compute the partial derivatives and the Hessian matrix of f.
- (b) Compute all stationary points of f. Show that there is exactly one stationary point $(x^*(a), y^*(a))$ that is a local maximum, and find it.
- (c) Will the local maximum value $f^*(a) = f(x^*(a), y^*(a))$ increase or decrease when the value of the parameter *a* increases?

QUESTION 3.

Solve the following differential equations:

(a)
$$y'' = -15$$
, $y(0) = 695$, $y'(0) = 55.5$
(b) $y' = (1 - 3t^2)y^2$, $y(0) = -1$
(c) $(2y - t)e^{y^2 - yt}y' - ye^{y^2 - yt} = 0$, $y(0) = 1$

QUESTION 4.

We consider the following optimization problem:

min
$$xy^2 + 5x^3y - xy$$
 subject to
$$\begin{cases} x+y \le 5\\ x \ge 0\\ y \ge 0 \end{cases}$$

- (a) Sketch the set of admissible points, and show that the optimization problem has a solution that satisfies the Kuhn-Tucker conditions.
- (b) Solve the optimization problem and compute the corresponding minimum value.