## BI

| Written examination: | GRA 60353 | Mathematics |
| :--- | :--- | :--- | :--- |
| Examination date: | $11.06 .2013 \quad 09: 00-12: 00$ | Total no. of pages: 2 |
| Permitted examination | A bilingual dictionary and BI-approved calculator TEXAS |  |
| support material: | INSTRUMENTS BA II Plus |  |

Question 1.

We consider the matrix $A$ given by

$$
A=\left(\begin{array}{ccc}
2 & 4 & s \\
-4 & -6 & -3 \\
s & s & 1
\end{array}\right)
$$

(a) Compute the determinant and rank of $A$.
(b) Compute all eigenvalues of $A$ when $s=0$. Is $A$ diagonalizable when $s=0$ ?

Question 2.

We consider the function $f(x, y ; a)=x y^{2}+5 x^{3} y-a^{2} x y$ with parameter $a$ defined for all points $(x, y) \in \mathbb{R}^{2}$. We assume that $a>0$.
(a) Compute the partial derivatives and the Hessian matrix of $f$.
(b) Compute all stationary points of $f$. Show that there is exactly one stationary point $\left(x^{*}(a), y^{*}(a)\right)$ that is a local maximum, and find it.
(c) Will the local maximum value $f^{*}(a)=f\left(x^{*}(a), y^{*}(a)\right)$ increase or decrease when the value of the parameter $a$ increases?

## Question 3.

Solve the following differential equations:
(a) $y^{\prime \prime}=-15, \quad y(0)=695, y^{\prime}(0)=55.5$
(b) $y^{\prime}=\left(1-3 t^{2}\right) y^{2}, \quad y(0)=-1$
(c) $(2 y-t) e^{y^{2}-y t} y^{\prime}-y e^{y^{2}-y t}=0, \quad y(0)=1$

## Question 4.

We consider the following optimization problem:

$$
\min x y^{2}+5 x^{3} y-x y \text { subject to }\left\{\begin{array}{l}
x+y \leq 5 \\
x \geq 0 \\
y \geq 0
\end{array}\right.
$$

(a) Sketch the set of admissible points, and show that the optimization problem has a solution that satisfies the Kuhn-Tucker conditions.
(b) Solve the optimization problem and compute the corresponding minimum value.

