BI

Evaluation guidelines: GRA 60353 Mathematics

Examination date: $\quad 13.12 .2012$ 09:00 - 12:00 Total no. of pages: 4

Permitted examination A bilingual dictionary and BI-approved calculator TEXAS
support material: INSTRUMENTS BA II Plus
Answer sheets:
Squares
Counts 80% of GRA 6035 The subquestions are weighted equally Responsible department: Economics

Question 1.

(a) We compute the determinant of A using cofactor expansion along the first column, and find that

$$
\operatorname{det}(A)=\left|\begin{array}{lll}
t & 1 & 1 \\
t & 2 & 1 \\
4 & t & 2
\end{array}\right|=t(4-t)-t(2-t)+4 \cdot(-1)=\mathbf{2 t}-\mathbf{4}
$$

Since $\operatorname{det}(A) \neq 0$ for $t \neq 2$, and the minor $\left|\begin{array}{l}1 \\ 1\end{array}\right|=-1$ of order two is non-zero, we have that

$$
\operatorname{rk}(A)= \begin{cases}\mathbf{3}, & t \neq 2 \\ \mathbf{2}, & t=2\end{cases}
$$

(b) When $t=-2$, the characteristic equation of A is given by

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-2-\lambda & 1 & 1 \\
-2 & 2-\lambda & 1 \\
4 & -2 & 2-\lambda
\end{array}\right|=0
$$

Cofactor expansion along the first column gives

$$
(-2-\lambda)\left((2-\lambda)^{2}+2\right)-(-2)(2-\lambda+2)+4(1-(2-\lambda))=0
$$

and we find that this reduces to

$$
(-2-\lambda)(2-\lambda)^{2}+2(-2-\lambda)+2(4-\lambda)+4(\lambda-1)=(-2-\lambda)(2-\lambda)^{2}=0
$$

The eigenvalues are therefore $\lambda=\mathbf{- 2}$ and $\lambda=\mathbf{2}$, where the last eigenvalue has multiplicity two. When $\lambda=2$, the eigenvectors are given by $(A-2 I) \mathbf{x}=\mathbf{0}$, and the matrix

$$
A-2 I=\left(\begin{array}{ccc}
-4 & 1 & 1 \\
-2 & 0 & 1 \\
4 & -2 & 0
\end{array}\right)
$$

has rank two since $A-2 I$ has a non-zero minor $\left|\begin{array}{ll}1 & 1 \\ 1\end{array}\right|=1$ of order two - it cannot have rank three since $\lambda=2$ is an eigenvalue. Therefore, the linear system has just one free variable while $\lambda=2$ is an eigenvalue of multiplicity two. So A is not diagonalizable when $t=-2$.

Question 2.

(a) We compute the partial derivatives and the Hessian matrix of f :

$$
\left(\begin{array}{c}
f_{x}^{\prime} \\
f_{y}^{\prime} \\
f_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
-4 x^{3}-2 h x+6 z \\
-6 y \\
6 x-12 z
\end{array}\right), \quad f^{\prime \prime}=\left(\begin{array}{ccc}
-12 x^{2}-2 h & 0 & 6 \\
0 & -6 & 0 \\
6 & 0 & -12
\end{array}\right)
$$

We see that the leading principal minors are given by $D_{1}=-12 x^{2}-2 h, D_{2}=-6 D_{1}$ and $D_{3}=-6\left(144 x^{2}+24 h-36\right)$. Hence $D_{1} \leq 0$ for all (x, y, z) if and only if $h \geq 0$, and if this is the case then $D_{2}=-6 D_{1} \geq 0$. Moreover, $D_{3} \leq 0$ for all (x, y, z) if and only if $h \geq 3 / 2$. This means that $D_{1} \leq 0, D_{2} \geq 0, D_{3} \leq 0$ if and only if $h \geq 3 / 2$, and the equalities are strict if $h>3 / 2$. If $h=3 / 2$, then $D_{3}=0$, and we compute the remaining principal minors. We find that $\Delta_{1}=-6,-12 \leq 0$ and that $\Delta_{2}=144 x^{2}, 72 \geq 0$. We conclude that f is concave if and only if $h \geq 3 / 2$, and $H=\mathbf{3} / \mathbf{2}$.
(b) We compute the stationary points, which are given by the equations

$$
-4 x^{3}-2 h x+6 z=0, \quad-6 y=0, \quad 6 x-12 z=0
$$

The last two equations give $y=0$ and $z=x / 2$, and the first equations becomes

$$
-4 x^{3}-2 h x+3 x=x\left(-4 x^{2}+3-2 h\right)=0 \quad \Leftrightarrow \quad x=0
$$

since $x^{2}=(3-2 h) / 4$ has no solutions when $h>3 / 2$ and the solution $x=0$ when $h=3 / 2$. The stationary points are therefore given by $\left(x^{*}(h), y^{*}(h), z^{*}(h)\right)=(\mathbf{0}, \mathbf{0}, \mathbf{0})$ when $h \geq 3 / 2$, and this is the global maximum since f is concave.
(c) Let $h \geq 3 / 2$. By the Envelope Theorem, we have that

$$
\frac{d}{d h} f^{*}(h)=\left.\frac{\partial f}{\partial h}\right|_{(x, y, z)=(0,0,0)}=\left.\left(-x^{2}+2 h\right)\right|_{(x, y, z)=(0,0,0)}=2 h \geq 3
$$

Since the derivative is positive, the maximal value will increase when h increases. We could also compute $f^{*}(h)=f(0,0,0)=12+h^{2}$ explicitly for $h \geq 3 / 2$, and use this to see that $f^{*}(h)$ increases when h increases.

Question 3.

(a) The homogeneous equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$ has characteristic equation $r^{2}-5 r+6=0$, and therefore roots $r=2,3$. Hence the homogeneous solution is $y_{h}(t)=C_{1} e^{2 t}+C_{2} e^{3 t}$. To find a particular solution of $y^{\prime \prime}-5 y^{\prime}+6 y=10 e^{-t}$, we try $y=A e^{-t}$. This gives $y^{\prime}=-A e^{-t}$ and $y^{\prime \prime}=A e^{-t}$, and substitution in the equation gives $(A+5 A+6 A) e^{-t}=10 e^{-t}$, or $12 A=10$. Hence $A=5 / 6$ is a solution, and $y_{p}(t)=\frac{5}{6} e^{-t}$ is a particular solution. This gives general solution

$$
y(t)=\mathbf{C}_{\mathbf{1}} \mathbf{e}^{\mathbf{2 t}}+\mathbf{C}_{\mathbf{2}} \mathbf{e}^{\mathbf{3 t}}+\frac{\mathbf{5}}{\mathbf{6}} \mathbf{e}^{-\mathbf{t}}
$$

(b) The differential equation $4 t e^{2 t} y-(1-2 t) e^{2 t} y^{\prime}=0$ is exact if and only if there is a function $h(t, y)$ such that

$$
\frac{\partial h}{\partial t}=4 t e^{2 t} y, \quad \frac{\partial h}{\partial y}=-(1-2 t) e^{2 t}
$$

We see that $h(t, y)=-(1-2 t) e^{2 t} y$ is a solution to the last equation, and differentiation shows that it is a solution to the first equation as well. Therefore the solution of the exact differential equation is given by

$$
h(t, y)=-(1-2 t) e^{2 t} y=C \quad \Rightarrow \quad y=\frac{\mathbf{C e}^{-\mathbf{2 t}}}{\mathbf{2 t}-\mathbf{1}} \quad(\text { when } t>1 / 2)
$$

Question 4.

(a) The homogeneous equation $p_{t+2}-2 p_{t+1}+p_{t}=0$ has characteristic equation $r^{2}-2 r+1=0$, with double root $r=1$. Therefore, the homogeneous solution is $p_{t}^{h}=\left(C_{1}+C_{2} t\right) 1^{t}=C_{1}+C_{2} t$. To find a particular solution, we first try $p_{t}=A$, which gives $0=-15$ and there is no solution for A. We then try $p_{t}=A t$, and get $A(t+2)-2 A(t+1)+A t=-15$, or $0=-15$, and there is again no solution for A. We try $p_{t}=A t^{2}$, and get $A(t+2)^{2}-2 A(t+1)^{2}+A t^{2}=-15$, or $2 A=-15$. The solution is $A=-7.5$, and we get $p_{t}=C_{1}+C_{2} t-7.5 t^{2}$. The initial conditions give $C_{1}=695$ and $695+C_{2}-7.5=743$, or $C_{2}=55.5$. The solution of the difference equation is therefore $p_{t}=\mathbf{6 9 5}+\mathbf{5 5 . 5 \mathbf { t }} \mathbf{- 7 . 5 \mathbf { t } ^ { \mathbf { 2 } }}$. Alternatively, the difference equation can be solved using the difference $d_{t}=p_{t+1}-p_{t}$. With this method, we first find d_{t} (see below), and then solve the first order difference equation $p_{t+1}-p_{t}=d_{t}$ when d_{t} is known.
(b) Let $d_{t}=p_{t+1}-p_{t}$ be the increase in the housing prices p_{t} from year t to $t+1$. Then we can rewrite the difference equation as

$$
d_{t+1}-d_{t}=\left(p_{t+2}-p_{t+1}\right)-\left(p_{t+1}-p_{t}\right)=p_{t+2}-2 p_{t+1}+p_{t}=-15
$$

This result can also be obtained from the expression for p_{t} found above. We can use this to determine d_{t}, since we have a first order difference equation $d_{t+1}-d_{t}=-15$, with initial condition $d_{0}=p_{1}-p_{0}=48$. We get homogeneous solution $d_{t}^{h}=C 1^{t}=C$. To find a particular solution, we first try $d_{t}=A$. Since this gives $0=-15$, we try $d_{t}=A t$, and get $A=-15$. So the general solution is $d_{t}=C-15 t$, and the initial condition $d_{0}=48$ gives $C=48$. Alternatively, we can see directly that the solution for d_{t} is given by $d_{t}=48-15 t$, since d_{t} is an arithmetic sequence. We conclude that $d_{t}>0$ for $t=0,1,2,3$ and that $d_{t}<0$ for $t \geq 4$. This means that the housing prices increases in the first 4 years (from $t=0$ to $t=4$) and decreases after that (from $t=4$).

Question 5.

For the sketch, see the figure below. Since $\ln (a b)=\ln (a)+\ln (b)$, we can rewrite the function as

$f(x, y)=2 \ln x+\ln y-x-y$ and the constraints as $-x-y \leq-4,-x \leq-1,-y \leq-1$. We write the Lagrangian for this problem as

$$
\begin{aligned}
\mathcal{L} & =2 \ln x+\ln y-x-y-\lambda(-x-y)-\nu_{1}(-x)-\nu_{2}(-y) \\
& =2 \ln x+\ln y-x-y+\lambda(x+y)+\nu_{1} x+\nu_{2} y
\end{aligned}
$$

The Kuhn-Tucker conditions for this problem are the first order conditions

$$
\begin{aligned}
& \mathcal{L}_{x}^{\prime}=\frac{2}{x}-1+\lambda+\nu_{1}=0 \\
& \mathcal{L}_{y}^{\prime}=\frac{1}{y}-1+\lambda+\nu_{2}=0
\end{aligned}
$$

the constraints $x+y \geq 4$ and $x, y \geq 1$, and the complementary slackness conditions $\lambda, \nu_{1}, \nu_{2} \geq 0$ and

$$
\lambda(x+y-4)=0, \quad \nu_{1}(x-1)=0, \quad \nu_{2}(y-1)=0
$$

Let us find all solutions of the Kuhn-Tucker conditions: If $x=1$, then $1+\lambda+\nu_{1}=0$ by the first FOC and this is not possible (since $\lambda, \nu_{1} \geq 0$). So we must have $x>1$ and $\nu_{1}=0$. If $y=1$, then $\lambda+\nu_{2}=0$ by the second FOC, and this implies that $\lambda=\nu_{2}=0$ (since $\left.\lambda, \nu_{2} \geq 0\right)$. Then the first

FOC implies that $x=2$, and this is not possible since $x+y \geq 4$. Hence we must also have $y>1$ and $\nu_{2}=0$. Using the FOC's, we get

$$
\lambda=1-\frac{2}{x}=1-\frac{1}{y}
$$

which gives $2 / x=1 / y$ or $x=2 y$ and $\lambda=1-1 / y>0$ since $y>1$. This implies that $x+y=4$, which gives $3 y=4$ or $y=4 / 3, x=8 / 3$ and $\lambda=1 / 4$. We conclude that there is exactly one solution of the Kuhn-Tucker conditions:

$$
\left(x, y ; \lambda, \nu_{1}, \nu_{2}\right)=(8 / 3,4 / 3 ; 1 / 4,0,0)
$$

The Lagrangian $\mathcal{L}=\mathcal{L}(x, y ; 1 / 4,0,0)=2 \ln x+\ln y-x-y+(x+y) / 4$ has Hessian

$$
\mathcal{L}^{\prime \prime}=\left(\begin{array}{cc}
-\frac{2}{x^{2}} & 0 \\
0 & -\frac{1}{y^{2}}
\end{array}\right)
$$

so \mathcal{L} is a concave function, since $D_{1}=-2 / x^{2}<0$ and $D_{2}=2 /\left(x^{2} y^{2}\right)>0(\mathcal{L}$ is only defined for $x, y \neq 0)$. Therefore $(x, y)=(8 / 3,4 / 3)$ is the maximum point.

