
Evaluation guidelines: GRA 60353 Mathematics

Examination date: 13.12.2012 09:00 – 12:00 Total no. of pages: 4

Permitted examination A bilingual dictionary and BI-approved calculator TEXAS

support material: INSTRUMENTS BA II Plus

Answer sheets: Squares

Counts 80% of GRA 6035 The subquestions are weighted equally

Responsible department: Economics

Question 1.

(a) We compute the determinant of A using cofactor expansion along the first column, and find
that

det(A) =

∣∣∣∣∣∣∣∣∣
t 1 1

t 2 1

4 t 2

∣∣∣∣∣∣∣∣∣ = t(4− t)− t(2− t) + 4 · (−1) = 2t− 4

Since det(A) 6= 0 for t 6= 2, and the minor | 1 1
2 1 | = −1 of order two is non-zero, we have that

rk(A) =

{
3, t 6= 2

2, t = 2

(b) When t = −2, the characteristic equation of A is given by

det(A− λI) =

∣∣∣∣∣∣∣∣∣
−2− λ 1 1

−2 2− λ 1

4 −2 2− λ

∣∣∣∣∣∣∣∣∣ = 0

Cofactor expansion along the first column gives

(−2− λ)((2− λ)2 + 2)− (−2)(2− λ+ 2) + 4(1− (2− λ)) = 0

and we find that this reduces to

(−2− λ)(2− λ)2 + 2(−2− λ) + 2(4− λ) + 4(λ− 1) = (−2− λ)(2− λ)2 = 0

The eigenvalues are therefore λ = −2 and λ = 2, where the last eigenvalue has multiplicity
two. When λ = 2, the eigenvectors are given by (A− 2I)x = 0, and the matrix

A− 2I =


−4 1 1

−2 0 1

4 −2 0


has rank two since A− 2I has a non-zero minor | 1 1

0 1 | = 1 of order two — it cannot have rank
three since λ = 2 is an eigenvalue. Therefore, the linear system has just one free variable while
λ = 2 is an eigenvalue of multiplicity two. So A is not diagonalizable when t = −2.



Question 2.

(a) We compute the partial derivatives and the Hessian matrix of f :
f ′x

f ′y

f ′z

 =


−4x3 − 2hx+ 6z

−6y

6x− 12z

 , f ′′ =


−12x2 − 2h 0 6

0 −6 0

6 0 −12


We see that the leading principal minors are given by D1 = −12x2 − 2h, D2 = −6D1 and
D3 = −6(144x2 + 24h− 36). Hence D1 ≤ 0 for all (x, y, z) if and only if h ≥ 0, and if this is
the case then D2 = −6D1 ≥ 0. Moreover, D3 ≤ 0 for all (x, y, z) if and only if h ≥ 3/2. This
means that D1 ≤ 0, D2 ≥ 0, D3 ≤ 0 if and only if h ≥ 3/2, and the equalities are strict if
h > 3/2. If h = 3/2, then D3 = 0, and we compute the remaining principal minors. We find
that ∆1 = −6,−12 ≤ 0 and that ∆2 = 144x2, 72 ≥ 0. We conclude that f is concave if and
only if h ≥ 3/2, and H = 3/2.

(b) We compute the stationary points, which are given by the equations

−4x3 − 2hx+ 6z = 0, −6y = 0, 6x− 12z = 0

The last two equations give y = 0 and z = x/2, and the first equations becomes

−4x3 − 2hx+ 3x = x(−4x2 + 3− 2h) = 0 ⇔ x = 0

since x2 = (3 − 2h)/4 has no solutions when h > 3/2 and the solution x = 0 when h = 3/2.
The stationary points are therefore given by (x∗(h), y∗(h), z∗(h)) = (0,0,0) when h ≥ 3/2,
and this is the global maximum since f is concave.

(c) Let h ≥ 3/2. By the Envelope Theorem, we have that

d

dh
f∗(h) =

∂f

∂h

∣∣∣
(x,y,z)=(0,0,0)

= (−x2 + 2h)
∣∣
(x,y,z)=(0,0,0)

= 2h ≥ 3

Since the derivative is positive, the maximal value will increase when h increases. We could
also compute f∗(h) = f(0, 0, 0) = 12+h2 explicitly for h ≥ 3/2, and use this to see that f∗(h)
increases when h increases.

Question 3.

(a) The homogeneous equation y′′ − 5y′ + 6y = 0 has characteristic equation r2 − 5r+ 6 = 0, and
therefore roots r = 2, 3. Hence the homogeneous solution is yh(t) = C1e

2t + C2e
3t. To find

a particular solution of y′′ − 5y′ + 6y = 10e−t, we try y = Ae−t. This gives y′ = −Ae−t and
y′′ = Ae−t, and substitution in the equation gives (A + 5A + 6A)e−t = 10e−t, or 12A = 10.
Hence A = 5/6 is a solution, and yp(t) = 5

6e
−t is a particular solution. This gives general

solution

y(t) = C1e
2t + C2e

3t +
5

6
e−t

(b) The differential equation 4te2ty − (1 − 2t)e2ty′ = 0 is exact if and only if there is a function
h(t, y) such that

∂h

∂t
= 4te2ty,

∂h

∂y
= −(1− 2t)e2t

We see that h(t, y) = −(1−2t)e2ty is a solution to the last equation, and differentiation shows
that it is a solution to the first equation as well. Therefore the solution of the exact differential
equation is given by

h(t, y) = −(1− 2t)e2ty = C ⇒ y =
Ce−2t

2t− 1
(when t > 1/2)
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Question 4.

(a) The homogeneous equation pt+2 − 2pt+1 + pt = 0 has characteristic equation r2 − 2r + 1 = 0,
with double root r = 1. Therefore, the homogeneous solution is pht = (C1 +C2t)1

t = C1 +C2t.
To find a particular solution, we first try pt = A, which gives 0 = −15 and there is no solution
for A. We then try pt = At, and get A(t+ 2)− 2A(t+ 1) +At = −15, or 0 = −15, and there
is again no solution for A. We try pt = At2, and get A(t+ 2)2 − 2A(t+ 1)2 + At2 = −15, or
2A = −15. The solution is A = −7.5, and we get pt = C1 +C2t− 7.5t2. The initial conditions
give C1 = 695 and 695 +C2− 7.5 = 743, or C2 = 55.5. The solution of the difference equation
is therefore pt = 695 + 55.5t− 7.5t2. Alternatively, the difference equation can be solved
using the difference dt = pt+1 − pt. With this method, we first find dt (see below), and then
solve the first order difference equation pt+1 − pt = dt when dt is known.

(b) Let dt = pt+1 − pt be the increase in the housing prices pt from year t to t+ 1. Then we can
rewrite the difference equation as

dt+1 − dt = (pt+2 − pt+1)− (pt+1 − pt) = pt+2 − 2pt+1 + pt = −15

This result can also be obtained from the expression for pt found above. We can use this
to determine dt, since we have a first order difference equation dt+1 − dt = −15, with initial
condition d0 = p1−p0 = 48. We get homogeneous solution dht = C1t = C. To find a particular
solution, we first try dt = A. Since this gives 0 = −15, we try dt = At, and get A = −15.
So the general solution is dt = C − 15t, and the initial condition d0 = 48 gives C = 48.
Alternatively, we can see directly that the solution for dt is given by dt = 48− 15t, since dt is
an arithmetic sequence. We conclude that dt > 0 for t = 0, 1, 2, 3 and that dt < 0 for t ≥ 4.
This means that the housing prices increases in the first 4 years (from t = 0 to t = 4) and
decreases after that (from t = 4).

Question 5.

For the sketch, see the figure below. Since ln(ab) = ln(a) + ln(b), we can rewrite the function as

f(x, y) = 2 lnx+ ln y − x− y and the constraints as −x− y ≤ −4,−x ≤ −1,−y ≤ −1. We write the
Lagrangian for this problem as

L = 2 lnx+ ln y − x− y − λ(−x− y)− ν1(−x)− ν2(−y)

= 2 lnx+ ln y − x− y + λ(x+ y) + ν1x+ ν2y

The Kuhn-Tucker conditions for this problem are the first order conditions

L′x =
2

x
− 1 + λ+ ν1 = 0

L′y =
1

y
− 1 + λ+ ν2 = 0

the constraints x+ y ≥ 4 and x, y ≥ 1, and the complementary slackness conditions λ, ν1, ν2 ≥ 0 and

λ(x+ y − 4) = 0, ν1(x− 1) = 0, ν2(y − 1) = 0

Let us find all solutions of the Kuhn-Tucker conditions: If x = 1, then 1 + λ + ν1 = 0 by the first
FOC and this is not possible (since λ, ν1 ≥ 0). So we must have x > 1 and ν1 = 0. If y = 1, then
λ + ν2 = 0 by the second FOC, and this implies that λ = ν2 = 0 (since λ, ν2 ≥ 0). Then the first
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FOC implies that x = 2, and this is not possible since x+ y ≥ 4. Hence we must also have y > 1 and
ν2 = 0. Using the FOC’s, we get

λ = 1− 2

x
= 1− 1

y
which gives 2/x = 1/y or x = 2y and λ = 1− 1/y > 0 since y > 1. This implies that x+ y = 4, which
gives 3y = 4 or y = 4/3, x = 8/3 and λ = 1/4. We conclude that there is exactly one solution of the
Kuhn-Tucker conditions:

(x, y;λ, ν1, ν2) = (8/3, 4/3; 1/4, 0, 0)

The Lagrangian L = L(x, y; 1/4, 0, 0) = 2 lnx+ ln y − x− y + (x+ y)/4 has Hessian

L′′ =

− 2
x2 0

0 − 1
y2


so L is a concave function, since D1 = −2/x2 < 0 and D2 = 2/(x2y2) > 0 (L is only defined for
x, y 6= 0). Therefore (x, y) = (8/3,4/3) is the maximum point.
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