Problem Sheet 9 with Solutions GRA 6035 Mathematics

Problems

1. Maximize the function

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}+x_{2}-1
$$

subject to $g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2} \leq 1$.
2. Solve max $\left(1-x^{2}-y^{2}\right)$ subject to $x \geq 2$ and $y \geq 3$ by a direct argument and then see what the Kuhn-Tucker conditions have to say about the problem.
3. Solve the following problem (assuming it has a solution):

$$
\min 4 \ln \left(x^{2}+2\right)+y^{2} \text { subject to } x^{2}+y \geq 2, x \geq 1
$$

4. Mock Final Exam in GRA6035 12/2010, 4

We consider the following optimization problem: Maximize $f(x, y, z)=x y+y z-x z$ subject to the constraint $x^{2}+y^{2}+z^{2} \leq 1$.
a) Write down the first order conditions for this problem, and solve the first order conditions for x, y, z using matrix methods.
b) Solve the optimization problem. Make sure that you check the non-degenerate constraint qualification, and also make sure that you show that the problem has a solution.

5. Final Exam in GRA6035 10/12/2010, 4

We consider the function $f(x, y, z)=x y z$.
a) The function g is defined on the set $D=\{(x, y, z): x>0, y>0, z>0\}$, and it is given by

$$
g(x, y, z)=\frac{1}{f(x, y, z)}=\frac{1}{x y z}
$$

Is g a convex or concave function on D ?
b) Maximize $f(x, y, z)$ subject to $x^{2}+y^{2}+z^{2} \leq 1$.

Solutions

1 The Lagrangian is

$$
\mathscr{L}(\mathbf{x})=x_{1}^{2}+x_{2}^{2}+x_{2}-1-\lambda\left(x_{1}^{2}+x_{2}^{2}-1\right),
$$

and the Kuhn-Tucker conditions are

$$
\begin{aligned}
& \mathscr{L}_{1}^{\prime}=2 x_{1}-2 \lambda x_{1}=2 x_{1}(1-\lambda)=0 \\
& \mathscr{L}_{2}^{\prime}=2 x_{2}+1-2 \lambda x_{2}=2 x_{2}(1-\lambda)+1=0
\end{aligned}
$$

and

$$
\lambda \geq 0 \text { and } \lambda=0 \text { if } x_{1}^{2}+x_{2}^{2}<1
$$

From $\mathscr{L}_{1}^{\prime}=0$ we obtain $2 x_{1}(1-\lambda)=0$. Thus $x_{1}=0$ or $\lambda=1$. If $\lambda=1$, then $\mathscr{L}_{2}^{\prime}=2 x_{2}+1-2 x_{2}=1 \neq 0$, so we conclude that $x_{1}=0$.

CASE $x_{1}^{2}+x_{2}^{2}=1$:
From $x_{1}^{2}+x_{2}^{2}=1$ and $x_{1}=0$ we obtain $x_{2}^{2}=1$ or $x_{2}= \pm 1$. We have $\mathscr{L}_{2}^{\prime}=$ $2 x_{2}(1-\lambda)+1= \pm 2(1-\lambda)+1=0 \Longrightarrow(1-\lambda)=\frac{-1}{ \pm 2}=\mp \frac{1}{2} \Longrightarrow \lambda=1 \pm \frac{1}{2}$. Thus

$$
\begin{aligned}
(0,-1) \text { corresponding to } \lambda & =\frac{1}{2} \text { and } \\
(0,1) \text { corresponding to } \lambda & =\frac{3}{2}
\end{aligned}
$$

are candidates for maximum.
CASE $x_{1}^{2}+x_{2}^{2}<1$:
From $x_{1}=0$ we get $x_{2}^{2}<1$. This is the same as to say $-1<x_{2}<1$. Since $\lambda=0$, $\mathscr{L}_{2}^{\prime}=2 x_{2}+1=0$ gives $x_{2}=-\frac{1}{2}$. We conclude that

$$
\left(0,-\frac{1}{2}\right) \text { corresponding to } \lambda=0
$$

is a candidate for maximum. We compute

$$
\begin{aligned}
f(0,1) & =1 \\
f(0,-1) & =-1 \text { and } \\
f\left(0,-\frac{1}{2}\right) & =-\frac{5}{4}
\end{aligned}
$$

and conclude that $f(0,1)=1$ is the maximal value.
2 See answers in FMEA (Exercise 3.5.1)
3 We will use the following general method of solving

$$
\max f\left(x_{1}, \ldots, x_{n}\right) \text { subject to }\left\{\begin{array}{c}
g_{1}\left(x_{1}, \ldots, x_{n}\right) \leq b_{1} \\
\vdots \\
g_{m}\left(x_{1}, \ldots, x_{n}\right) \leq b_{m}
\end{array}\right.
$$

by applying the following steps:
a) $\mathscr{L}=f-\lambda_{1} g_{1}-\cdots-\lambda_{m} g_{m}$
b) $\mathscr{L}_{1}^{\prime}=0, \mathscr{L}_{2}^{\prime}=0, \ldots, \mathscr{L}_{n}^{\prime}=0$ (FOC's)
c) $\lambda_{j} \geq 0$ and $\lambda_{j}=0$ if $g_{j}\left(x_{1}, \ldots, x_{n}\right)<b_{j}$
d) Require $g_{j}\left(x_{1}, \ldots, x_{n}\right) \leq b_{j}$

To transform the problem into this setting, we define

$$
f(x, y)=-\left(4 \ln \left(x^{2}+2\right)+y^{2}\right)
$$

since minimizing $4 \ln \left(x^{2}+2\right)+y^{2}$ is the same as maximizing $-\left(4 \ln \left(x^{2}+2\right)+y^{2}\right)$. We also rewrite the constraints as

$$
\begin{aligned}
& g_{1}(x, y)=-x^{2}-y \leq-2 \\
& g_{2}(x, y)=-x \leq-1
\end{aligned}
$$

We define the Lagrange function:

$$
\begin{aligned}
\mathscr{L} & =-\left(4 \ln \left(x^{2}+2\right)+y^{2}\right)-\lambda_{1}\left(-x^{2}-y\right)-\lambda_{2}(-x) \\
& =-4 \ln \left(x^{2}+2\right)-y^{2}+\lambda_{1}\left(x^{2}+y\right)+\lambda_{2} x
\end{aligned}
$$

The first order conditions are the

$$
\begin{aligned}
& \mathscr{L}_{1}^{\prime}=-4 \frac{1}{x^{2}+2} \cdot 2 x+2 \lambda_{1} x+\lambda_{2}=\frac{-8 x}{x^{2}+2}+2 \lambda_{1} x+\lambda_{2}=0 \\
& \mathscr{L}_{2}^{\prime}=-2 y+\lambda_{1}=0
\end{aligned}
$$

Since there are two constraints, there are four cases to consider:

$$
\text { The case }-x^{2}-y=-2 \text { and }-x=-1 \text { : }
$$

Since $x=1$, we deduce from $\mathscr{L}_{1}^{\prime}=0$ that

$$
\frac{-8 \cdot 1}{1^{2}+2}+2 \lambda_{1} \cdot 1+\lambda_{2}=0 \Longleftrightarrow 2 \lambda_{1}+\lambda_{2}-\frac{8}{3}=0
$$

From $x^{2}+y=2$ and $x=1$ we obtain that $y=1$. From $\mathscr{L}_{2}^{\prime}=-2 y+\lambda_{1}=0$ we the obtain that $\lambda_{1}=2$. Substituting this into $2 \lambda_{1}+\lambda_{2}-\frac{8}{3}=0$ we get

$$
2 \cdot 2+\lambda_{2}-\frac{8}{3}=0 \Longleftrightarrow \lambda_{2}=-\frac{4}{3}<0
$$

This violates the complementary slackness conditions that says that $\lambda_{2} \geq 0$ since the second constraint is active. We conclude that the case case $-x^{2}-y=-2$ and $-x=-1$ does not lead to a solution.

The case $-x^{2}-y=-2$ and $-x<-1$:

Since the second constraint is inactive, we get $\lambda_{2}=0$. Substituting this into $\frac{-8 x}{x^{2}+2}+2 \lambda_{1} x+\lambda_{2}=0$ we get

$$
\frac{-8 x}{x^{2}+2}+2 \lambda_{1} x=0 \Longleftrightarrow 2 x\left(\lambda_{1}-\frac{4}{x^{2}+2}\right)=0
$$

Since $x>1$ this gives

$$
\lambda_{1}=\frac{4}{x^{2}+2}
$$

From $-x^{2}-y=-2$ we have that $y=2-x^{2}$ and substituting this and $\lambda_{1}=\frac{4}{x^{2}+2}$ into $-2 y+\lambda_{1}=0$ gives

$$
-2\left(2-x^{2}\right)+\frac{4}{x^{2}+2}=0 \Longleftrightarrow\left(x^{2}+2\right)\left(x^{2}-2\right)+2=0 \Longleftrightarrow x^{4}=2
$$

From this we obtain that

$$
x= \pm \sqrt[4]{2} \cong \pm 1.1892
$$

Since $x>1$ we get that

$$
x=\sqrt[4]{2}
$$

From $y=2-x^{2}$ we obtain

$$
y=2-\sqrt{2}
$$

and from $\lambda_{1}=2 y$ we get

$$
\lambda_{1}=2(2-\sqrt{2})
$$

Thus we have the following candidate for optimum

$$
(\sqrt[4]{2}, 2-\sqrt{2}) \longleftrightarrow \lambda_{1}=2(2-\sqrt{2}), \lambda_{2}=0
$$

$$
\text { The case }-x^{2}-y<-2 \text { and }-x=-1 \text { : }
$$

Since the first constraint is inactive, we get $\lambda_{1}=1$. Substituting this into $-2 y+$ $\lambda_{1}=0$ we get

$$
y=0 .
$$

Since $x=1$ by assumption, we see that $-x^{2}-y=-1$ which is not less that -2 so the first constraint is not satisfied. Thus the case $-x^{2}-y<-2$ and $-x=-1$ does not give any solution

$$
\text { The case }-x^{2}-y<-2 \text { and }-x<-1 \text { : }
$$

Since both constraints are inactive, we get $\lambda_{1}=0$ and $\lambda_{2}=0$. Thus we get from $-2 y+\lambda_{1}=0$ that

$$
y=0
$$

and from $\frac{-8 x}{x^{2}+2}+2 \lambda_{1} x+\lambda_{2}=0$ that

$$
x=0
$$

But $-x=0$ is not less that -1 , so this gives no solutions.

Conclusion:

The minimum value (subject to the constraints) is given by

$$
(x, y)=(\sqrt[4]{2}, 2-\sqrt{2}) \Longrightarrow 4 \ln \left(x^{2}+2\right)+y^{2}=4 \ln (\sqrt{2}+2)+(2-\sqrt{2})^{2} \cong 5.2549
$$

4 Mock Final Exam in GRA6035 12/2010, Problem 4

See handwritten solution on the coarse page for GRA 6035 Mathematics 2010/11.

5 Final Exam in GRA6035 10/12/2010, Problem 4

a) The Hessian of f is indefinite for all $(x, y, z) \neq(0,0,0)$ since it is given by

$$
f^{\prime \prime}=\left(\begin{array}{lll}
0 & z & y \\
z & 0 & x \\
y & x & 0
\end{array}\right)
$$

and has principal minors $-z^{2},-y^{2},-x^{2}$ of order two. Hence f is not convex or concave. We compute the Hessian of g, and find

$$
g^{\prime \prime}=\frac{1}{x y z}\left(\begin{array}{ccc}
\frac{2}{x^{2}} & \frac{1}{x y} & \frac{1}{x z} \\
\frac{1}{x y} & \frac{2}{y^{2}} & \frac{1}{y z} \\
\frac{1}{x z} & \frac{1}{y z} & \frac{2}{z^{2}}
\end{array}\right)
$$

Hence the leading principal minors are

$$
D_{1}=\frac{1}{x y z} \frac{2}{x^{2}}>0, \quad D_{2}=\frac{1}{(x y z)^{2}} \frac{3}{(x y)^{2}}>0, \quad D_{3}=\frac{1}{(x y z)^{3}} \frac{4}{(x y z)^{2}}>0
$$

This means that g is convex.
b) The set $\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$ is closed and bounded, so the problem has solutions by the extreme value theorem. The NDCQ is satisfied, since the rank of $(2 x 2 y 2 z)=1$ when $x^{2}+y^{2}+z^{2}=1$. We form the Lagrangian

$$
\mathscr{L}=x y z-\lambda\left(x^{2}+y^{2}+z^{2}-1\right)
$$

and solve the Kuhn-Tucker conditions, consisting of the first order conditions

$$
\begin{aligned}
& \mathscr{L}_{x}^{\prime}=y z-\lambda \cdot 2 x=0 \\
& \mathscr{L}_{y}^{\prime}=x z-\lambda \cdot 2 y=0 \\
& \mathscr{L}_{z}^{\prime}=x y-\lambda \cdot 2 z=0
\end{aligned}
$$

together with one of the following conditions: i) $x^{2}+y^{2}+z^{2}=1$ and $\lambda \geq 0$ or ii) $x^{2}+y^{2}+z^{2}<1$ and $\lambda=0$. We first solve the equations/inequalities in case i): If $x=0$, then we see that $y=0$ or $z=0$ from the first equation, and we get the solutions $(x, y, z ; \lambda)=(0,0, \pm 1 ; 0),(0, \pm 1,0 ; 0)$. If $x \neq 0$, we get $2 \lambda=y z / x$ and the remaining first order conditions give $\left(x^{2}-y^{2}\right) z=0$ and $\left(x^{2}-z^{2}\right) y=0$. If $y=0$, we get the solution $(\pm 1,0,0 ; 0)$. Otherwise, we get $x^{2}=y^{2}=z^{2}$, hence

$$
(x, y, z ; \lambda)=\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}} ; \pm \frac{1}{2 \sqrt{3}}\right)
$$

The condition that $\lambda \geq 0$ give that either all three coordinates (x, y, z) are positive, or that one is positive and two are negative. In total, we obtain four different solutions. We note that $f(x, y, z)=\frac{1}{3 \sqrt{3}}$ for each of these four solutions, while $f(x, y, z)=0$ for either of the first three solutions. Finally, we consider case ii), where $\lambda=0$. This gives $x y=x z=y z=0$, and we obtain

$$
(x, y, z ; \lambda)=(a, 0,0 ; 0),(0, a, 0 ; 0),(0,0, a ; 0)
$$

The condition that $x^{2}+y^{2}+z^{2}<1$ give $a^{2} \leq 1$ or $a \in(-1,1)$. For all these solutions, we get $f(x, y, z)=0$. We can therefore conclude that the solution to the optimization problem is a maximum value of

$$
\frac{1}{3 \sqrt{3}}
$$

