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Problems

1. Maximize the function

f (x1,x2) = x2
1 + x2

2 + x2−1

subject to g(x1,x2) = x2
1 + x2

2 ≤ 1.

2. Solve max (1−x2−y2) subject to x≥ 2 and y≥ 3 by a direct argument and then
see what the Kuhn-Tucker conditions have to say about the problem.

3. Solve the following problem (assuming it has a solution):

min 4ln(x2 +2)+ y2 subject to x2 + y≥ 2,x≥ 1

4. Mock Final Exam in GRA6035 12/2010, 4
We consider the following optimization problem: Maximize f (x,y,z) = xy+yz−xz
subject to the constraint x2 + y2 + z2 ≤ 1.

a) Write down the first order conditions for this problem, and solve the first order
conditions for x,y,z using matrix methods.

b) Solve the optimization problem. Make sure that you check the non-degenerate
constraint qualification, and also make sure that you show that the problem has a
solution.

5. Final Exam in GRA6035 10/12/2010, 4
We consider the function f (x,y,z) = xyz.

a) The function g is defined on the set D = {(x,y,z) : x > 0,y > 0,z > 0}, and it is
given by

g(x,y,z) =
1

f (x,y,z)
=

1
xyz

Is g a convex or concave function on D?
b) Maximize f (x,y,z) subject to x2 + y2 + z2 ≤ 1.
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Solutions

1 The Lagrangian is

L (x) = x2
1 + x2

2 + x2−1−λ (x2
1 + x2

2−1),

and the Kuhn-Tucker conditions are

L ′
1 = 2x1−2λx1 = 2x1(1−λ ) = 0

L ′
2 = 2x2 +1−2λx2 = 2x2(1−λ )+1 = 0

and
λ ≥ 0 and λ = 0 if x2

1 + x2
2 < 1.

From L ′
1 = 0 we obtain 2x1(1− λ ) = 0. Thus x1 = 0 or λ = 1. If λ = 1, then

L ′
2 = 2x2 +1−2x2 = 1 6= 0, so we conclude that x1 = 0.
CASE x2

1 + x2
2 = 1 :

From x2
1 + x2

2 = 1 and x1 = 0 we obtain x2
2 = 1 or x2 = ±1. We have L ′

2 =
2x2(1− λ )+ 1 = ±2(1− λ )+ 1 = 0 =⇒ (1− λ ) = −1

±2 = ∓ 1
2 =⇒ λ = 1± 1

2 .
Thus

(0,−1) corresponding to λ =
1
2

and

(0,1) corresponding to λ =
3
2

are candidates for maximum.
CASE x2

1 + x2
2 < 1 :

From x1 = 0 we get x2
2 < 1. This is the same as to say −1 < x2 < 1. Since λ = 0,

L ′
2 = 2x2 +1 = 0 gives x2 =− 1

2 . We conclude that

(0,−1
2
) corresponding to λ = 0

is a candidate for maximum. We compute

f (0,1) = 1
f (0,−1) =−1 and

f (0,−1
2
) =−5

4

and conclude that f (0,1) = 1 is the maximal value.

2 See answers in FMEA (Exercise 3.5.1)

3 We will use the following general method of solving
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max f (x1, . . . ,xn) subject to


g1(x1, . . . ,xn)≤ b1

...
gm(x1, . . . ,xn)≤ bm

by applying the following steps:

a) L = f −λ1g1−·· ·−λmgm
b) L ′

1 = 0,L ′
2 = 0, . . . ,L ′

n = 0 (FOC’s)
c) λ j ≥ 0 and λ j = 0 if g j(x1, . . . ,xn)< b j
d) Require g j(x1, . . . ,xn)≤ b j

To transform the problem into this setting, we define

f (x,y) =−(4ln(x2 +2)+ y2)

since minimizing 4ln(x2 +2)+ y2 is the same as maximizing −(4ln(x2 +2)+ y2).
We also rewrite the constraints as

g1(x,y) =−x2− y≤−2
g2(x,y) =−x≤−1

We define the Lagrange function:

L =−(4ln(x2 +2)+ y2)−λ1(−x2− y)−λ2(−x)

=−4ln(x2 +2)− y2 +λ1(x2 + y)+λ2x

The first order conditions are the

L ′
1 =−4

1
x2 +2

·2x+2λ1x+λ2 =
−8x

x2 +2
+2λ1x+λ2 = 0

L ′
2 =−2y+λ1 = 0

Since there are two constraints, there are four cases to consider:

The case −x2− y =−2 and −x =−1 :

Since x = 1, we deduce from L ′
1 = 0 that

−8 ·1
12 +2

+2λ1 ·1+λ2 = 0⇐⇒ 2λ1 +λ2−
8
3
= 0

From x2 + y = 2 and x = 1 we obtain that y = 1. From L ′
2 = −2y+λ1 = 0 we the

obtain that λ1 = 2. Substituting this into 2λ1 +λ2− 8
3 = 0 we get

2 ·2+λ2−
8
3
= 0⇐⇒ λ2 =−

4
3
< 0
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This violates the complementary slackness conditions that says that λ2 ≥ 0 since
the second constraint is active. We conclude that the case case −x2− y = −2 and
−x =−1 does not lead to a solution.

The case −x2− y =−2 and −x <−1 :

Since the second constraint is inactive, we get λ2 = 0. Substituting this into
−8x
x2+2 +2λ1x+λ2 = 0 we get

−8x
x2 +2

+2λ1x = 0⇐⇒ 2x(λ1−
4

x2 +2
) = 0

Since x > 1 this gives

λ1 =
4

x2 +2

From−x2−y =−2 we have that y = 2−x2 and substituting this and λ1 =
4

x2+2 into
−2y+λ1 = 0 gives

−2(2− x2)+
4

x2 +2
= 0⇐⇒ (x2 +2)(x2−2)+2 = 0⇐⇒ x4 = 2

From this we obtain that
x =± 4√2∼=±1.1892

Since x > 1 we get that
x = 4√2

From y = 2− x2 we obtain
y = 2−

√
2

and from λ1 = 2y we get
λ1 = 2(2−

√
2)

Thus we have the following candidate for optimum

( 4√2,2−
√

2)←→ λ1 = 2(2−
√

2),λ2 = 0

The case −x2− y <−2 and −x =−1 :

Since the first constraint is inactive, we get λ1 = 1. Substituting this into −2y+
λ1 = 0 we get

y = 0.

Since x = 1 by assumption, we see that −x2− y = −1 which is not less that −2 so
the first constraint is not satisfied. Thus the case −x2− y < −2 and −x = −1 does
not give any solution
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The case −x2− y <−2 and −x <−1 :

Since both constraints are inactive, we get λ1 = 0 and λ2 = 0. Thus we get from
−2y+λ1 = 0 that

y = 0

and from −8x
x2+2 +2λ1x+λ2 = 0 that

x = 0

But −x = 0 is not less that −1, so this gives no solutions.

Conclusion:

The minimum value (subject to the constraints) is given by

(x,y) = (
4√2,2−

√
2) =⇒ 4ln(x2 +2)+ y2 = 4ln(

√
2+2)+(2−

√
2)2 ∼= 5.2549

4 Mock Final Exam in GRA6035 12/2010, Problem 4
See handwritten solution on the coarse page for GRA 6035 Mathematics 2010/11.

5 Final Exam in GRA6035 10/12/2010, Problem 4

a) The Hessian of f is indefinite for all (x,y,z) 6= (0,0,0) since it is given by

f ′′ =

0 z y
z 0 x
y x 0


and has principal minors−z2,−y2,−x2 of order two. Hence f is not convex or concave.
We compute the Hessian of g, and find

g′′ =
1

xyz


2
x2

1
xy

1
xz

1
xy

2
y2

1
yz

1
xz

1
yz

2
z2


Hence the leading principal minors are

D1 =
1

xyz
2
x2 > 0, D2 =

1
(xyz)2

3
(xy)2 > 0, D3 =

1
(xyz)3

4
(xyz)2 > 0

This means that g is convex.
b) The set {(x,y,z) : x2 + y2 + z2 ≤ 1} is closed and bounded, so the problem has

solutions by the extreme value theorem. The NDCQ is satisfied, since the rank
of
(
2x 2y 2z

)
= 1 when x2 + y2 + z2 = 1. We form the Lagrangian
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L = xyz−λ (x2 + y2 + z2−1)

and solve the Kuhn-Tucker conditions, consisting of the first order conditions

L ′
x = yz−λ ·2x = 0

L ′
y = xz−λ ·2y = 0

L ′
z = xy−λ ·2z = 0

together with one of the following conditions: i) x2 + y2 + z2 = 1 and λ ≥ 0 or
ii) x2 + y2 + z2 < 1 and λ = 0. We first solve the equations/inequalities in case
i): If x = 0, then we see that y = 0 or z = 0 from the first equation, and we get
the solutions (x,y,z;λ ) = (0,0,±1;0),(0,±1,0;0). If x 6= 0, we get 2λ = yz/x
and the remaining first order conditions give (x2− y2)z = 0 and (x2− z2)y = 0.
If y = 0, we get the solution (±1,0,0;0). Otherwise, we get x2 = y2 = z2, hence

(x,y,z;λ ) =

(
± 1√

3
,± 1√

3
,± 1√

3
;± 1

2
√

3

)
The condition that λ ≥ 0 give that either all three coordinates (x,y,z) are positive,
or that one is positive and two are negative. In total, we obtain four different
solutions. We note that f (x,y,z) = 1

3
√

3
for each of these four solutions, while

f (x,y,z) = 0 for either of the first three solutions. Finally, we consider case ii),
where λ = 0. This gives xy = xz = yz = 0, and we obtain

(x,y,z;λ ) = (a,0,0;0),(0,a,0;0),(0,0,a;0)

The condition that x2 + y2 + z2 < 1 give a2 ≤ 1 or a ∈ (−1,1). For all these
solutions, we get f (x,y,z) = 0. We can therefore conclude that the solution to the
optimization problem is a maximum value of

1
3
√

3


