Problem Sheet 8 with Solutions GRA 6035 Mathematics

Problems

1. [FMEA] Problem 3.1.4.
2. [FMEA] Problem 3.1.5.
3. [FMEA] Problem 3.3.4.
4. [EMEA] Problem 3.5.1.
5. [EMEA] Problem 3.5.3.
6. Final Exam in GRA6035 10/12/2010, Problem 4

We consider the function $f(x, y, z)=x y z$.
a) The function g is defined on the set $D=\{(x, y, z): x>0, y>0, z>0\}$, and it is given by

$$
g(x, y, z)=\frac{1}{f(x, y, z)}=\frac{1}{x y z}
$$

Is g a convex or concave function on D ?
b) Maximize $f(x, y, z)$ subject to $x^{2}+y^{2}+z^{2} \leq 1$.
7. Mock Final Exam in GRA6035 12/2010, Problem 4

We consider the following optimization problem: Maximize $f(x, y, z)=x y+y z-x z$ subject to the constraint $x^{2}+y^{2}+z^{2} \leq 1$.
a) Write down the first order conditions for this problem, and solve the first order conditions for x, y, z using matrix methods.
b) Solve the optimization problem. Make sure that you check the non-degenerate constraint qualification, and also make sure that you show that the problem has a solution.

8. Final Exam in GRA6035 30/05/2011, Problem 4

We consider the function $f(x, y)=x y e^{x+y}$ defined on $D_{f}=\left\{(x, y):(x+1)^{2}+(y+\right.$ $\left.1)^{2} \leq 1\right\}$.
a) Compute the Hessian of f. Is f a convex function? Is f a concave function?
b) Find the maximum and minimum values of f.

Solutions

For Problem 1-5, see the solutions in [EG] Eriksen, Gustavsen (Problems 7.1-7.3 and 8.10-8.11).

6 Final Exam in GRA6035 10/12/2010, Problem 4

a) We compute the Hessian of g, and find

$$
g^{\prime \prime}=\frac{1}{x y z}\left(\begin{array}{ccc}
\frac{2}{x^{2}} & \frac{1}{x y} & \frac{1}{x z} \\
\frac{1}{x y} & \frac{2}{y^{2}} & \frac{1}{y z} \\
\frac{1}{x z} & \frac{1}{y z} & \frac{2}{z^{2}}
\end{array}\right)
$$

Hence the leading principal minors are

$$
D_{1}=\frac{1}{x y z} \frac{2}{x^{2}}>0, \quad D_{2}=\frac{1}{(x y z)^{2}} \frac{3}{(x y)^{2}}>0, \quad D_{3}=\frac{1}{(x y z)^{3}} \frac{4}{(x y z)^{2}}>0
$$

This means that g is convex.
b) The set $\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$ is closed and bounded, so the problem has solutions by the extreme value theorem. The NDCQ is satisfied, since the rank of $(2 x 2 y 2 z)=1$ when $x^{2}+y^{2}+z^{2}=1$. We form the Lagrangian

$$
\mathscr{L}=x y z-\lambda\left(x^{2}+y^{2}+z^{2}-1\right)
$$

and solve the Kuhn-Tucker conditions, consisting of the first order conditions

$$
\begin{aligned}
& \mathscr{L}_{x}^{\prime}=y z-\lambda \cdot 2 x=0 \\
& \mathscr{L}_{y}^{\prime}=x z-\lambda \cdot 2 y=0 \\
& \mathscr{L}_{z}^{\prime}=x y-\lambda \cdot 2 z=0
\end{aligned}
$$

together with one of the following conditions: i) $x^{2}+y^{2}+z^{2}=1$ and $\lambda \geq 0$ or ii) $x^{2}+y^{2}+z^{2}<1$ and $\lambda=0$. We first solve the equations/inequalities in case i): If $x=0$, then we see that $y=0$ or $z=0$ from the first equation, and we get the solutions $(x, y, z ; \lambda)=(0,0, \pm 1 ; 0),(0, \pm 1,0 ; 0)$. If $x \neq 0$, we get $2 \lambda=y z / x$ and the remaining first order conditions give $\left(x^{2}-y^{2}\right) z=0$ and $\left(x^{2}-z^{2}\right) y=0$. If $y=0$, we get the solution $(\pm 1,0,0 ; 0)$. Otherwise, we get $x^{2}=y^{2}=z^{2}$, hence

$$
(x, y, z ; \lambda)=\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}} ; \pm \frac{1}{2 \sqrt{3}}\right)
$$

The condition that $\lambda \geq 0$ give that either all three coordinates (x, y, z) are positive, or that one is positive and two are negative. In total, we obtain four different solutions. We note that $f(x, y, z)=\frac{1}{3 \sqrt{3}}$ for each of these four solutions, while $f(x, y, z)=0$ for either of the first three solutions. Finally, we consider case ii),
where $\lambda=0$. This gives $x y=x z=y z=0$, and we obtain

$$
(x, y, z ; \lambda)=(a, 0,0 ; 0),(0, a, 0 ; 0),(0,0, a ; 0)
$$

The condition that $x^{2}+y^{2}+z^{2}<1$ give $a^{2} \leq 1$ or $a \in(-1,1)$. For all these solutions, we get $f(x, y, z)=0$. We can therefore conclude that the solution to the optimization problem is a maximum value of

$$
\frac{1}{3 \sqrt{3}}
$$

7 Mock Final Exam in GRA6035 12/2010, Problem 4

See handwritten solution on the coarse page for GRA 6035 Mathematics 2010/11.

8 Final Exam in GRA6035 30/05/2011, Problem 4

a) We compute the Hessian of f, and find

$$
f^{\prime \prime}=e^{x+y}\left(\begin{array}{cc}
(x+2) y & (x+1)(y+1) \\
(x+1)(y+1) & x(y+2)
\end{array}\right)
$$

The principal minors are

$$
\Delta_{1}=e^{x+y}(x+2) y, \Delta_{1}=e^{x+y} x(y+2), \quad D_{2}=\left(e^{x+y}\right)^{2}\left(1-(x+1)^{2}-(y+1)^{2}\right)
$$

Since $(x+1)^{2}+(y+1)^{2} \leq 1, D_{f}$ is a ball with center in $(-1,-1)$ and radius $r=1$, and it follows that $x, y<0$ and $x+2, y+2 \geq 0$, and therefore $\Delta_{1} \leq 0$ and $D_{2} \geq 0$. This means that f is concave, but not convex.
b) Since D_{f} is closed and bounded, f has maximum and minimum values. We compute the stationary points of f : We have

$$
f_{x}^{\prime}=(x+1) y e^{x+y}=0, \quad f_{y}^{\prime}=x(y+1) e^{x+y}=0
$$

and $(x, y)=(0,0)$ and $(x, y)=(-1,-1)$ are the solutions. Hence there is only one stationary point $(x, y)=(-1,-1)$ in D_{f}, and the $f(-1,-1)=\mathbf{e}^{-2}$ is the maximum value of f since f is concave. The minimum value most occur for (x, y) on the boundary of D_{f}. We see that $f(x, y) \geq 0$ for all $(x, y) \in D_{f}$ while $f(-1,0)=f(0,-1)=0$. Hence $\mathbf{f}(-\mathbf{1}, \mathbf{0})=\mathbf{f}(\mathbf{0},-\mathbf{1})=\mathbf{0}$ is the minimum value of f.

