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Problems

1. Check if the vector v is an eigenvector of the matrix A when

A =

(
1 2
2 1

)
, v =

(
1
1

)
If v is an eigenvector, what is the corresponding eigenvalue?

2. Find the eigenvalues and eigenvectors of the following matrices:

a)
(

2 −7
3 −8

)
b)

(
2 4
−2 6

)
c)

(
1 4
6 −1

)
3. Find the eigenvalues and eigenvectors of the following matrices:

a)

2 0 0
0 3 0
0 0 4

 b)

2 1 −1
0 1 1
2 0 −2


4. Let A be a square matrix and let λ be an eigenvalue of A. Suppose that A is an
invertible matrix, and prove that λ 6= 0 and that 1/λ is an eigenvalue of A−1.

5. Consider the square matrix A and the vectors v1,v2,v3 given by

A =

 1 18 30
−2 −11 −10
2 6 5

 , v1 =

−3
1
0

 , v2 =

−5
0
1

 , v3 =

 3
−1
1


Show that vi is an eigenvector for A for i = 1,2,3 and find the corresponding eigen-
values. Use this to find an invertible matrix P and a diagonal matrix D such that
A = PDP−1.

6. Find an invertible matrix P such that D = P−1AP is diagonal when

A =

(
2 −7
3 −8

)
7. Show that the following matrix is not diagonalizable:

A =

(
3 5
0 3

)
8. Initially, two firms A and B (numbered 1 and 2) share the market for a certain
commodity. Firm A has 20% of the marked and B has 80%. In course of the next
year, the following changes occur:

A keeps 85% of its customers, while losing 15% to B
B keeps 55% of its customers, while losing 45% to A
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We can represent market shares of the two firms by means of a market share vector,
defined as a column vector s whose components are all nonnegative and sum to 1.
Define the matrix T and the initial share vector s by

T =

(
0.85 0.45
0.15 0.55

)
, s =

(
0.2
0.8

)
The matrix T is called the transition matrix.

a) Compute the vector T s, and show that it is also a market share vector.
b) Find the eigenvalues and eigenvectors of T .
c) Find a matrix P such that D = P−1T P is diagonal, and show that T n = PDnP−1.
d) Compute the limit of Dn as n→ ∞ and use this to find the limit of T ns as n→ ∞.

Explain that the we will approach an equilibrium, a situation where the market
shares of A and B are constant. What are the equilibrium marked shares?

9. Determine if the following matrix is diagonalizable:

A =

4 1 2
0 3 0
1 1 5


If this is the case, find an invertible matrix P such that P−1AP is diagonal, and use
this to compute A17.

10. Final Exam in GRA6035 10/12/2010, Problem 2
We consider the matrix A and the vector v given by

A =

1 7 −2
0 s 0
1 1 4

 , v =

1
1
1


a) Compute the determinant and the rank of A.
b) Find all eigenvalues of A. Is v an eigenvector for A?
c) Determine the values of s such that A is diagonalizable.

11. Mock Final Exam in GRA6035 12/2010, Problem 1
We consider the matrix A given by

A =

1 1 −4
0 t +2 t−8
0 −5 5


a) Compute the determinant and the rank of A.
b) Find all eigenvalues of A.
c) Determine the values of t such that A is diagonalizable.



4

12. Final Exam in GRA6035 30/05/2011, Problem 2
We consider the matrix A and the vector v given by

A =

1 1 1
1 s s2

1 −1 1

 , v =

 1
1
−1


a) Compute the determinant and the rank of A.
b) Find all values of s such that v is an eigenvector for A.
c) Compute all eigenvalues of A when s =−1. Is A diagonalizable when s =−1?

Challenging Matrix Problems for Advanced Students

These matrix problems are quite challenging and are meant for advanced students. It
is recommended that you work through the ordinary problems and exam problems
from Problem Sheet 1-4 and make sure that you master them before you attempt
Problem 13-15 (which are optional).

13. Solve the equation ∣∣∣∣∣∣
x 2 3
2 x 3
2 3 x

∣∣∣∣∣∣= 0

14. Solve the equation∣∣∣∣∣∣∣∣∣∣∣∣

x+1 0 x 0 x−1 0
0 x 0 x−1 0 x+1
x 0 x−1 0 x+1 0
0 x−1 0 x+1 0 x

x−1 0 x+1 0 x 0
0 x+1 0 x 0 x−1

∣∣∣∣∣∣∣∣∣∣∣∣
= 9

15. Solve the linear system

x2 + x3 + . . . + xn−1 + xn = 2
x1 + x3 + . . . + xn−1 + xn = 4
x1 + x2 + . . . + xn−1 + xn = 6

...
...

x1 + x2 + x3 + . . . + xn−1 = 2n
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Solutions

1 We compute that

Av =

(
1 2
2 1

)(
1
1

)
=

(
3
3

)
= 3v

This means that v is an eigenvector with eigenvalue λ = 3.

2 a) We solve the characteristic equation to find the eigenvalues:∣∣∣∣2−λ −7
3 −8−λ

∣∣∣∣= λ
2 +6λ +5 = 0 ⇒ λ =−1,−5

For each eigenvalue, we compute the eigenvectors using an echelon form of the
coefficient matrix, and express the eigenvectors in terms of the free variables. For
λ =−1, we get eigenvectors(

3 −7
3 −7

)
99K

(
3 −7
0 0

)
⇒ 3x−7y = 0 ⇒

(
x
y

)
=

( 7
3 y
y

)
= y
(

7/3
1

)
For λ =−5, we get eigenvectors(

7 −7
3 −3

)
99K

(
7 −7
0 0

)
⇒ 7x−7y = 0 ⇒

(
x
y

)
=

(
y
y

)
= y
(

1
1

)
b) We solve the characteristic equation to find the eigenvalues:∣∣∣∣2−λ 4

−2 6−λ

∣∣∣∣= λ
2−8λ +20 = 0 ⇒ no solutions

Since there are no solutions, there are no eigenvalues and no eigenvectors.
c) We solve the characteristic equation to find the eigenvalues:∣∣∣∣1−λ 4

6 −1−λ

∣∣∣∣= λ
2−25 = 0 ⇒ λ = 5,−5

For each eigenvalue, we compute the eigenvectors using an echelon form of the
coefficient matrix, and express the eigenvectors in terms of the free variables. For
λ = 5, we get eigenvectors(
−4 4
6 −6

)
99K

(
−4 4
0 0

)
⇒ −4x+4y = 0 ⇒

(
x
y

)
=

(
y
y

)
= y
(

1
1

)
For λ =−5, we get eigenvectors(

6 4
6 4

)
99K

(
6 4
0 0

)
⇒ 6x+4y = 0 ⇒

(
x
y

)
=

(
− 2

3 y
y

)
= y
(
−2/3

1

)
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3 a) We solve the characteristic equation to find the eigenvalues:∣∣∣∣∣∣
2−λ 0 0

0 3−λ 0
0 0 4−λ

∣∣∣∣∣∣= (2−λ )(3−λ )(4−λ ) = 0 ⇒ λ = 2,3,4

For each eigenvalue, we compute the eigenvectors using an echelon form of the
coefficient matrix, and express the eigenvectors in terms of the free variables. For
λ = 2, we get eigenvectors0 0 0

0 1 0
0 0 2

 99K

0 1 0
0 0 2
0 0 0

 ⇒ y = 0, 2z = 0 ⇒

x
y
z

=

x
0
0

= x

1
0
0


For λ = 3, we get eigenvectors−1 0 0

0 0 0
0 0 1

 99K

−1 0 0
0 0 1
0 0 0

 ⇒ x = z = 0 ⇒

x
y
z

=

0
y
0

= y

0
1
0


For λ = 4, we get eigenvectors−2 0 0

0 −1 0
0 0 0

 ⇒ x = y = 0 ⇒

x
y
z

=

0
0
z

= z

0
0
1


b) We solve the characteristic equation to find the eigenvalues. Since the equation
(of degree three) is a bit difficult to solve, we first change the determinant by adding
the second row to the first row:∣∣∣∣∣∣

2−λ 1 −1
0 1−λ 1
2 0 −2−λ

∣∣∣∣∣∣=
∣∣∣∣∣∣
2−λ 2−λ 0

0 1−λ 1
2 0 −2−λ

∣∣∣∣∣∣
Then we transpose the matrix, and subtract the first row from the second row:

=

∣∣∣∣∣∣
2−λ 0 2
2−λ 1−λ 0

0 1 −2−λ

∣∣∣∣∣∣=
∣∣∣∣∣∣
2−λ 0 2

0 1−λ −2
0 1 −2−λ

∣∣∣∣∣∣= (2−λ )(λ 2 +λ ) = 0

We see that the eigenvalues are λ = 2,0,−1. For each eigenvalue, we compute the
eigenvectors using an echelon form of the coefficient matrix, and express the eigen-
vectors in terms of the free variables. For this operation, we must use the matrix
before the transposition, since the operation of transposing the coefficient matrix
will not preserve the solutions of the linear system (but it will preserve the determi-
nant). For λ = 2, we get eigenvectors
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0 −1 1
2 0 −4

 99K

2 0 −4
0 −1 1
0 0 0

 ⇒ y = z, x = 2z ⇒

x
y
z

= z

2
1
1


For λ = 0, we get eigenvectors2 2 0

0 1 1
2 0 −2

 99K

2 0 −2
0 1 1
0 0 0

 ⇒ 2x = 2z, y =−z ⇒

x
y
z

= z

 1
−1
1


For λ =−1, we get eigenvectors3 3 0

0 2 1
2 0 −1

 99K

2 0 −1
0 2 1
0 0 0

 ⇒ 2x= z, 2y=−z ⇒

x
y
z

= z

 1/2
−1/2

1


4 If A is invertible, then det(A) 6= 0. Hence λ = 0 is not an eigenvalue. If it were, then
λ = 0 would solve the characteristic equation, and we would have det(A−0 · In) =
det(A) = 0; this is a contradiction. For the last part, notice that if v is an eigenvector
for A with eigenvalue λ , then we have

Av = λv ⇒ v = A−1
λv = λA−1v ⇒ λ

−1v = A−1v

This means that λ−1 = 1/λ is an eigenvalue of A−1 (with eigenvector v).

5 We form that matrix P with vi as the i’th column, i = 1,2,3, and compute AP:

AP =

 1 18 30
−2 −11 −10
2 6 5

−3 −5 3
1 0 −1
0 1 1

=

15 25 15
−5 0 −5
0 −5 5


We have AP = (Av1|Av2|Av3), and looking at the columns of AP we see that

Av1 =−5v1, Av2 =−5v2, Av3 = 5v3

The vectors are therefore eigenvectors, with eigenvalues λ =−5,−5,5. The matrix
P is invertible since the three vectors v1,v2,v3 are linearly independent, and we have
AP = PD ⇒ A = PDP−1 when D is the diagonal matrix

D =

−5 0 0
0 −5 0
0 0 5


6 We use the eigenvalues and eigenvectors we found in Problem a). Since there are
two distinct eigenvalues, the matrix A is diagonalizable, and D = P−1AP when we
put

P =

(
7/3 1
1 1

)
, D =

(
−1 0
0 −5

)
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7 We find the eigenvalues of A by solving the characteristic equation:∣∣∣∣3−λ 5
0 3−λ

∣∣∣∣= (3−λ )2 = 0 ⇒ λ = 3

Hence there is only one eigenvalue (with multiplicity 2). The corresponding eigen-
vectors are found by reducing the coefficient matrix to an echelon form. For λ = 3,
we get eigenvectors(

0 5
0 0

)
⇒ 5y = 0 ⇒

(
x
y

)
=

(
x
0

)
= x
(

1
0

)
In particular, there is only one free variable and therefore not more than one linearly
independent eigenvector. This means that there are too few linearly independent
eigenvectors (only one eigenvector while n = 2), hence A is not diagonalizable.

8

a) We compute the matrix product

T s =
(

0.53
0.47

)
and see that the result is a market share vector.

b) We find the eigenvalues of T by solving the characteristic equation∣∣∣∣0.85−λ 0.45
0.15 0.55−λ

∣∣∣∣= λ
2−1.4λ +0.4 = 0

This gives eigenvalues λ = 1,0.4. The eigenvectors for λ = 1 is given by
−0.15x+ 0.45y = 0, or x = 3y; and for λ = 0.4, the eigenvectors are given by
0.45x+0.45y = 0, or x = −y. Hence eigenvectors are given in terms of the free
variables by

v1 = y
(

3
1

)
, v2 = y

(
−1
1

)
c) From the eigenvectors, we see that

P =

(
3 −1
1 1

)
This gives T n = (PDP−1)n = PDnP−1.

d) When n→ ∞, we get that

Dn =

(
1 0
0 0.4

)n

=

(
1 0
0 0.4n

)
→
(

1 0
0 0

)
Hence the limit of T n as n→ ∞ is given by
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T n→
(

3 −1
1 1

)(
1 0
0 0

)(
3 −1
1 1

)−1

=

(
3 0
1 0

)
1
4

(
1 1
−1 3

)
=

(
3/4 3/4
1/4 1/4

)
and

T ns→
(

3/4 3/4
1/4 1/4

)(
0.2
0.8

)
=

(
0.75
0.25

)
The equilibrium marked shares are 75% for A and 25% for B.

9 We find the eigenvalues of A by solving the characteristic equation:∣∣∣∣∣∣
4−λ 1 2

0 3−λ 0
1 1 5−λ

∣∣∣∣∣∣= (3−λ )(λ 2−9λ +18) = 0 ⇒ λ = 3,3,6

Hence there is one eigenvalue λ = 3 with multiplicity 2, and one eigenvalue λ =
6 with multiplicity 1. The corresponding eigenvectors are found by reducing the
coefficient matrix to an echelon form. For λ = 3, we get eigenvectors1 1 2

0 0 0
1 1 2

 99K

1 1 2
0 0 0
0 0 0

 ⇒ x =−y−2z

Since there is two degrees of freedom, there are two linearly independent eigenvec-
tors v1,v2 for λ = 3, given byx

y
z

=

−y−2z
y
z

= y

−1
1
0

+ z

−2
0
1

= yv1 + zv2

Since λ = 6 is an eigenvalue of multiplicity one, we get one eigenvector v3 given
by−2 1 2

0 −3 0
1 1 −1

 99K

1 0 −1
0 −3 0
0 0 0

 ⇒ x = z, y = 0 ⇒

x
y
z

= z

1
0
1


Hence A is diagonalizable, and we have that P−1AP = D is diagonal with

P =

−1 −2 1
1 0 0
0 1 1

 , D =

3 0 0
0 3 0
0 0 6


We use this to compute A17, since A = PDP−1. We do not show the computation of
P−1, which is straight-forward:

A17 = (PDP−1)17 = PD17P−1 =

−1 −2 1
1 0 0
0 1 1

317 0 0
0 317 0
0 0 617

 1
3

 0 3 0
−1 −1 1
1 1 2


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This gives

A17 = 316

 2 −1 −2
0 3 0
−1 −1 1

+616

2 2 4
0 0 0
2 2 4


10 Final Exam in GRA6035 10/12/2010, Problem 2

a) The determinant of A is given by

det(A) =

∣∣∣∣∣∣
1 7 −2
0 s 0
1 1 4

∣∣∣∣∣∣= s(4+2) = 6s

It follows that the rank of A is 3 if s 6= 0 (since det(A) 6= 0). When s = 0, A has
rank 2 since det(A) = 0 but the minor∣∣∣∣1 −2

1 4

∣∣∣∣= 6 6= 0

Therefore, we get

rk(A) =

{
3, s 6= 0
2, s = 0

b) We compute the characteristic equation of A, and find that∣∣∣∣∣∣
1−λ 7 −2

0 s−λ 0
1 1 4−λ

∣∣∣∣∣∣= (s−λ )(λ 2−5λ +6) = (s−λ )(λ −2)(λ −3)

Therefore, the eigenvalues of A are λ = s,2,3. Furthermore, we have that

Av =

6
s
6


We see that v is an eigenvector for A if and only if s = 6, in which case Av = 6v.

c) If s 6= 2,3, then A has three distinct eigenvalues, and therefore A is diagonalizable.
If s = 2, we check the eigenspace corresponding to the double root λ = 2: The
coefficient matrix of the system has echelon form−1 7 −2

0 0 0
1 1 2

 99K

1 1 2
0 8 0
0 0 0


of rank two, so there is only one free variable. If s = 3, we check the eigenspace
corresponding to the double root λ = 3: The coefficient matrix of the system has
echelon form
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0 0 0
1 1 1

 99K

1 1 1
0 9 0
0 0 0


of rank two, so there is only one free variable. In both cases, there are too few
linearly independent eigenvectors, and A is not diagonalizable. Hence A is diag-
onalixable if s 6= 2,3.

11 Mock Final Exam in GRA6035 12/2010, Problem 1

a) The determinant of A is given by

det(A) =

∣∣∣∣∣∣
1 1 −4
0 t +2 t−8
0 −5 5

∣∣∣∣∣∣= 10t−30 = 10(t−3)

It follows that the rank of A is 3 if t 6= 3 (since det(A) 6= 0). When t = 3, A has
rank 2 since det(A) = 0 but the minor∣∣∣∣1 −4

0 5

∣∣∣∣= 5 6= 0

Therefore, we get

rk(A) =

{
3, t 6= 3
2, t = 3

b) We compute the characteristic equation of A, and find that∣∣∣∣∣∣
1−λ 1 −4

0 t +2−λ t−8
0 −5 5−λ

∣∣∣∣∣∣= (1−λ )(λ 2− (t +7)λ +10(t−3)) = 0

Since λ 2 − (t + 7)λ + 10(t − 3) = 0 has solutions λ = 10 and λ = t − 3, the
eigenvalues of A are λ = 1,10, t−3.

c) When A has three distinct eigenvalues, it is diagonalizable. We see that this hap-
pens for all values of t except t = 4 and t = 13. Hence A is diagonalizable for
t 6= 4,13. If t = 4, we check the eigenspace corresponding to the double root
λ = 1: The coefficient matrix of the system has echelon form0 1 −4

0 5 −4
0 −5 4

 99K

0 1 −4
0 0 16
0 0 0


of rank two, so there is only one free variable. If t = 13, we check the eigenspace
corresponding to the double root λ = 10: The coefficient matrix of the system
has echelon form
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0 5 5
0 −5 −5

 99K

−9 1 −4
0 5 5
0 0 0


of rank two, so there is only one free variable. In both cases, there are too few
linearly independent eigenvectors, and A is not diagonalizable. Hence A is diag-
onalizable if t 6= 4,13.

12 Final Exam in GRA6035 30/05/2011, Problem 2

a) The determinant of A is given by

det(A) =

∣∣∣∣∣∣
1 1 1
1 s s2

1 −1 1

∣∣∣∣∣∣= 2s2−2 = 2(s−1)(s+1)

It follows that the rank of A is 3 if s 6= ±1 (since det(A) 6= 0). When s = ±1, A
has rank 2 since det(A) = 0 but there is a non-zero minor of order two in each
case. Therefore, we get

rk(A) =

{
3, s 6=±1
2, s =±1

b) We compute that

Av =

 1
1+ s− s2

−1

 , λv =

 λ

λ

−λ


and see that v is an eigenvector for A if and only if λ = 1 and 1+ s− s2 = 1, or
s = s2. This gives s = 0,1.

c) We compute the characteristic equation of A when s =−1, and find that∣∣∣∣∣∣
1−λ 1 1

1 −1−λ 1
1 −1 1−λ

∣∣∣∣∣∣= λ (2+λ −λ
2) =−λ (λ −2)(λ +1)

Therefore, the eigenvalues of A are λ = 0,2,−1 when s =−1. Since A has three
distinct eigenvalues when s =−1, it follows that A is diagonalizable.


