Problem Sheet 12 with Solutions GRA 6035 Mathematics

BI Norwegian Business School

Problems

1. Find the solution of the difference equation $x_{t+1} = 2x_t + 4$ with $x_0 = 1$.

2. Find the solution of the difference equation $w_{t+1} = (1+r)w_t + y_{t+1} - c_{t+1}$ when r = 0.2, $w_0 = 1000$, $y_t = 100$ and $c_t = 50$.

3. Prove by direct substitution that the following sequences in t are solutions of the associated difference equations when A, B are constants:

a) $x_t = A + B \cdot 2^t$ is a solution of $x_{t+2} - 3x_{t+1} + 2x_t = 0$ b) $x_t = A \cdot 3^t + B \cdot 4^t$ is a solution of $x_{t+2} - 7x_{t+1} + 12x_t = 0$

4. Find the general solution of the difference equation $x_{t+2} - 2x_{t+1} + x_t = 0$.

5. Find the general solution of the difference equation $3x_{t+2} - 12x_t = 4$.

6. Find the general solution of the following difference equations:

a) $x_{t+2} - 6x_{t+1} + 8x_t = 0$ b) $x_{t+2} - 8x_{t+1} + 16x_t = 0$ c) $x_{t+2} + 2x_{t+1} + 3x_t = 0$

7. Find the general solution of the difference equation $x_{t+2} + 2x_{t+1} + x_t = 9 \cdot 2^t$.

8. A model for location uses the difference equation

$$D_{t+2} - 4(ab+1)D_{t+1} + 4a^2b^2D_t = 0$$

where *a*,*b* are constants and D_t is the unknown sequence. Find the solution of this equation assuming that 1 + 2ab > 0.

9. Is the difference equation $x_{t+2} - x_{t+1} - x_t = 0$ globally asymptotically stable?

10. Final Exam in GRA6035 10/12/2007, Problem 3

a) Find the solution of $\dot{x} = (t-2)x^2$ that satisfies x(0) = 1.

b) Find the general solution of the differential equation $\ddot{x} - 5\dot{x} + 6x = e^{7t}$.

c) Find the general solution of the differential equation $\dot{x} + 2tx = te^{-t^2+t}$.

d) Find the solution of $3x^2e^{x^3+3t}\dot{x} + 3e^{x^3+3t} - 2e^{2t} = 0$ with x(1) = -1.

11. Final Exam in GRA6035 10/12/2010, Problem 3a

You borrow an amount *K*. The interest rate per period is *r*. The repayment is 500 in the first period, and increases with 10 for each subsequent period. Show that the outstanding balance b_t after period *t* satisfies the difference equation

$$b_{t+1} = (1+r)b_t - (500+10t), \quad b_0 = K$$

and solve this difference equation.

2

12. Mock Final Exam in GRA6035 12/2010, Problem 3

a) Find the solution of y' = y(1 - y) that satisfies y(0) = 1/2.
b) Find the general solution of the differential equation

$$\left(\ln(t^2+1) - 2\right)y' = 2t - \frac{2ty}{t^2+1}$$

c) Solve the difference equation

$$p_{t+2} = \frac{2}{3} p_{t+1} + \frac{1}{3} p_t, \quad p_0 = 100, \quad p_1 = 102$$

13. Final Exam in GRA6035 30/05/2011, Problem 3a

Solve the difference equation $x_{t+1} = 3x_t + 4$, $x_0 = 2$ and compute x_5 .

Solutions

1 We write the difference equation $x_{t+1} - 2x_t = 4$, and see that it is a first order linear inhomogeneous equation. The homogeneous solution is $x_t^h = C \cdot 2^t$ since the characteristic equation is r - 2 = 0, so that r = 2. We look for a particular solution of the form $x_t^p = A$ (constant), and see that A - 2A = 4, so that A = -4 and $x_t^p = -4$. Hence the general solution is

$$x_t = x_t^h + x_t^p = C \cdot 2^t - 4$$

The initial condition $x_0 = 1$ gives $C \cdot 1 - 4 = 1$, or C = 5. The solution is therefore $x_t = 5 \cdot 2^t - 4$.

2 We write the difference equation $w_{t+1} - 1.2w_t = 50$, and see that it is a first order linear inhomogeneous equation. The homogeneous solution is $w_t^h = C \cdot 1.2^t$ since the characteristic root is 1.2. We look for a particular solution of the form $w_t^p = A$ (constant), and see that A - 1.2A = 50, so that A = -250 and $x_t^p = -250$. Hence the general solution is

$$w_t = w_t^h + w_t^p = C \cdot 1.2^t - 250$$

The initial condition $w_0 = 1000$ gives $C \cdot 1 - 250 = 1000$, or C = 1250. The solution is therefore $w_t = 1250 \cdot 1.2^t - 250$.

3 We compute the left hand side of the difference equations to check that the given sequences are solutions:

- a) $(A+B\cdot 2^{t+2}) 3(A+B\cdot 2^{t+1}) + 2(A+B\cdot 2^t) = (A-3A+2A) + (4B-6B+2B) + 2^t = 0$
- b) $(A \cdot 3^{t+2} + B \cdot 4^{t+2}) 7(A \cdot 3^{t+1} + B \cdot 4^{t+1}) + 12(A \cdot 3^t + B \cdot 4^t) = (9A 21A + 12A) \cdot 3^t + (16B 28B + 12B) \cdot 2^t = 0$

We see that the given sequence is a solution in each case.

4 The difference equation $x_{t+2} - 2x_{t+1} + x_t = 0$ is a second order linear homogeneous equation. The characteristic equation is $r^2 - 2r + 1 = 0$ and has a double root r = 1, and therefore the general solution is

$$x_t = C_1 \cdot 1^t + C_2 t \cdot 1^t = \mathbf{C_1} + \mathbf{C_2 t}$$

5 We write the difference equation $3x_{t+2} - 12x_t = 4$ as $x_{t+2} - 4x_t = 1$. It is a second order linear inhomogeneous equation. We first find the homogeneous solution: The characteristic equation is $r^2 - 4 = 0$ and has roots $r = \pm 2$, and therefore the homogeneous solution is $x_t = C_1 \cdot 2^t + C_2 \cdot (-2)^t$. For the particular solution, we see that $f_t = 4$ in the original difference equation $3x_{t+2} - 12x_t = 4$, so we guess $x_t^p = A$, a constant. This gives $x_t = A$ and $x_{t+2} = A$, so 3A - 12A = 4, or A = -4/9. Hence the particular solution is $x_t^p = -4/9$, and the general solution is

$$x_t = x_t^h + x_t^p = \mathbf{C_1} \cdot \mathbf{2^t} + \mathbf{C_2} \cdot (-2)^t - 4/9$$

- 6 In each case, we solve the characteristic equation to find the general solution:
- a) The characateristic equation of $x_{t+2} 6x_{t+1} + 8x_t = 0$ is $r^2 6r + 8 = 0$, and has roots r = 2, 4. Therefore, the general solution is $x_t = \mathbf{C}_1 \cdot \mathbf{2}^t + \mathbf{C}_2 \cdot \mathbf{4}^t$.
- b) The characateristic equation of $x_{t+2} 8x_{t+1} + 16x_t = 0$ is $r^2 8r + 16 = 0$, and has a double root r = 4. Therefore, the general solution is $x_t = \mathbf{C_1} \cdot \mathbf{4^t} + \mathbf{C_2 t} \cdot \mathbf{4^t}$.
- c) The characateristic equation of $x_{t+2} + 2x_{t+1} + 3x_t = 0$ is $r^2 + 2r + 3 = 0$, and has roots given by

$$r = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 3}}{2} = -1 \pm \sqrt{-8}/2$$

Hence there are no real roots. We have a = 2 and b = 3, so the general solution is $x_t = (\sqrt{3})^t (\mathbf{C_1} \cos(2.186t) + \mathbf{C_2} \sin(2.186t))$ since we have that $\cos(2.186) \simeq -1/\sqrt{3}$.

7 The difference equation $x_{t+2} + 2x_{t+1} + x_t = 9 \cdot 2^t$ is a second order linear inhomogeneous equation. We first find the homogeneous solution, and therefore consider the homogeneous equation $x_{t+2} + 2x_{t+1} + x_t = 0$. The characteristic equation is $r^2 + 2r + 1 = 0$ and it has a double root r = -1. Therefore the homogeneous solution is $x_t^h = C_1 \cdot (-1)^t + C_2 t \cdot (-1)^t = (C_1 + C_2 t)(-1)^t$. We then find a particular solution of the inhomogeneous equation $x_{t+2} + 2x_{t+1} + x_t = 9 \cdot 2^t$, and look for a solution of the form $x_t = A \cdot 2^t$. This gives

$$A \cdot 2^{t+2} + 2(A \cdot 2^{t+1}) + (A \cdot 2^t) = 9 \cdot 2^t \quad \Rightarrow \quad (4A + 4A + A) \cdot 2^t = 9 \cdot 2^t$$

This gives 9A = 9 or A = 1, and the particular solution is $x_t^p = 1 \cdot 2^t = 2^t$. Hence the general solution is

$$x_t = x_t^h + x_t^p = (\mathbf{C_1} + \mathbf{C_2} \mathbf{t}) \cdot (-1)^{\mathbf{t}} + 2^{\mathbf{t}}$$

8 The difference equation $D_{t+2} - 4(ab+1)D_{t+1} + 4a^2b^2D_t = 0$ is a linear second order homogeneous equation. Its characteristic equation is $r^2 - 4(ab+1)r + 4a^2b^2 = 0$, and it has roots given by

$$r = \frac{4(ab+1) \pm \sqrt{16(ab+1)^2 - 4 \cdot 4a^2b^2}}{2} = 2(ab+1) \pm 2\sqrt{2ab+1}$$

Since we assume that 1 + 2ab > 0, there are distinct characteristic roots $r_1 \neq r_2$ given by

$$r_1 = 2(ab + \sqrt{2ab} + 1), \quad r_2 = 2(ab - \sqrt{2ab} + 1)$$

and the general solution is

$$D_t = C_1 \cdot r_1^t + C_2 \cdot r_2^t = \mathbf{2}^t (\mathbf{C_1} \cdot (\mathbf{ab} + \sqrt{\mathbf{2ab} + 1})^t + \mathbf{C_2} \cdot (\mathbf{ab} - \sqrt{\mathbf{2ab} + 1})^t)$$

9 The difference equation $x_{t+2} - x_{t+1} - x_t = 0$ is a linear second order homogeneous equation, with characteristic equation $r^2 - r - 1 = 0$ and characteristic roots given by

$$r = \frac{1 \pm \sqrt{1+4}}{2} = \frac{1 \pm \sqrt{5}}{2}$$

Hence it has two distinct characteristic roots $r_1 \neq r_2$ given by

$$r_1 = \frac{1+\sqrt{5}}{2} \simeq 1.618, \quad r_2 = \frac{1-\sqrt{5}}{2} \simeq -0.618$$

and the general solution is $x_t = C_1 \cdot r_1^t + C_2 \cdot r_2^t$. It is globally asymptotically stable if $x_t \to 0$ as $t \to \infty$ for all values of C_1, C_2 , and this is not the case since $r_1 > 1$. In fact, $x_t \to \pm \infty$ as $t \to \infty$ if $C_1 \neq 0$. Therefore, the difference equation is **not globally** asymptotically stable.

10 Final Exam in GRA6035 10/12/2007, Problem 3

- a) We have $\dot{x} = (t-2)x^2 \implies \frac{1}{x^2}\dot{x} = t-2 \implies \int \frac{1}{x^2}dx = \int (t-2)dt \implies -\frac{1}{x} = \frac{1}{2}t^2 2t + C \implies x = \frac{-2}{t^2 4t + 2C}$. The initial condition $x(0) = \frac{-2}{2C} = \frac{-1}{C} = 1 \implies 0$ $\tilde{C} = -1 \implies x(t) = \frac{-2}{t^2 - 4t - 2}$
- b) We have $\ddot{x} 5\dot{x} + 6x = 0, r^2 5r + 6 = 0 \implies r = 3, r = 2 \implies x_h(t) = Ae^{2t} + Be^{3t}$, and $x_p = Ce^{7t} \implies \dot{x}_p = 7Ce^{7t} \implies \ddot{x}_p = 49Ce^{7t}$ gives $\ddot{x}_p 5\dot{x}_p + 6x_p = Ce^{7t}(49 5 \cdot 7 + 6) = 20Ce^{7t} = 1 \implies C = \frac{1}{20}$. Hence $x(t) = Ae^{2t} + Be^{3t} + \frac{1}{20}e^{7t}$. c) Integrating factor $e^{t^2} \implies xe^{t^2} = \int te^{-t^2 + t}e^{t^2}dt = \int te^t dt = te^t e^t + C \implies x(t) = (te^t e^t + C)e^{-t^2}$.
- d) We have $\frac{\partial}{\partial t}(3x^2e^{x^3+3t}) = 9x^2e^{3t+x^3}$ and $\frac{\partial}{\partial x}(3e^{x^3+3t}-2e^{2t}) = 9x^2e^{3t+x^3}$, so the differential equation is exact. We look for h with $h'_x = 3x^2e^{x^3+3t} \implies h = e^{x^3+3t} + \alpha(t) \implies h'_t = 3e^{x^3+3t} + \alpha'(t)$. But $h'_t = 3e^{x^3+3t} + \alpha'(t) = 3e^{x^3+3t} - 2e^{2t} \implies$ $\alpha'(t) = -2e^{2t} \implies \alpha(t) = -e^{2t} + C \implies h = e^{x^3 + 3t} - e^{2t} + C$. This gives solution in implicit form

$$h = e^{x^3 + 3t} - e^{2t} = K$$

The initial condition
$$x(1) = -1 \implies e^{(-1)^3 + 3} - e^2 = K \implies K = 0 \implies e^{x^3 + 3t} - e^{2t} = 0 \implies e^{x^3 + 3t} = e^{2t} \implies x^3 + 3t = 2t \implies x^3 = -t \implies x(t) = \sqrt[3]{-t}.$$

11 Final Exam in GRA6035 10/12/2010, Problem 3a

We have $b_{t+1} - b_t = rb_t - s_{t+1}$, where $s_{t+1} = 500 + 10t$ is the repayment in period t + 1. Hence we get the difference equation

$$b_{t+1} = (1+r)b_t - (500+10t), \quad b_0 = K$$

The homogenous solution is $b_t^h = C(1+r)^t$. We try to find a particular solution of the form $b_t = At + B$, which gives $b_{t+1} = At + A + B$. Substitution in the difference equation gives

$$At + A + B = (1 + r)(At + B) - (500 + 10t) = ((1 + r)A - 10)t + (1 + r)B - 500$$

and this gives A = 10/r and $B = 10/r^2 + 500/r$. Hence the solution of the difference equation is

$$b_t = b_t^h + b_t^p = C(1+r)^t + \frac{10}{r}t + \frac{10}{r^2} + \frac{500}{r}$$

The initial value condition is $K = C + 10/r^2 + 500/r$, hence we obtain the solution

$$b_t = \left(\mathbf{K} - \frac{10}{r^2} - \frac{500}{r}\right)(1+r)^t + \frac{10}{r}t + \frac{10}{r^2} + \frac{500}{r}$$

12 Mock Final Exam in GRA6035 12/2010, Problem 3

See handwritten solution on the coarse page for GRA 6035 Mathematics 2010/11.

13 Final Exam in GRA6035 30/05/2011, Problem 3a

We have $x_{t+1} - 3x_t = 4$, and the homogenous solution is $x_t^h = C \cdot 3^t$. We try to find a particular solution of the form $x_t = A$, and substitution in the difference equation gives A = 3A + 4, so A = -2 is a particular solution. Hence the solution of the difference equation is

$$x_t = x_t^h + x_t^p = C \cdot 3^t - 2$$

The initial value condition is 2 = C - 2, hence we obtain the solution

$$x_t = 4 \cdot 3^t - 2$$

This gives $x_5 = 970$.