Problem Sheet 11 with Solutions GRA 6035 Mathematics

Problems

1. Find the general solution of the following differential equations:
a) $\ddot{x}=t$
b) $\ddot{x}=e^{t}+t^{2}$
2. Solve the initial value problem $\ddot{x}=t^{2}-t, x(0)=1, \dot{x}(0)=2$.
3. Solve the problem $\ddot{x}=\dot{x}+t, x(0)=1, x(1)=2$.
4. Find the general solutions of the following differential equations:
a) $\ddot{x}-3 \dot{x}=0$
b) $\ddot{x}+4 \dot{x}+8 x=0$
c) $3 \ddot{x}+8 \dot{x}=0$
d) $4 \ddot{x}+4 \dot{x}+x=0$
e) $\ddot{x}+\dot{x}-6 x=8$
f) $\ddot{x}+3 \dot{x}+2 x=e^{5 t}$
5. Find the general solutions
a) $\ddot{x}-x=e^{-t}$
b) $3 \ddot{x}-30 \dot{x}+75 x=2 t+1$
6. Solve
a) $\ddot{x}+2 \dot{x}+x=t^{2}, x(0)=0, \dot{x}(0)=1$
b) $\ddot{x}+4 x=4 t+1, x\left(\frac{\pi}{2}\right)=0, \dot{x}\left(\frac{\pi}{2}\right)=0$
7. Consider the equation $\ddot{x}+a \dot{x}+b x=0$ when $\frac{1}{4} a^{2}-b$, so that that the characteristic equation has a double root $r=-\frac{a}{2}$. Let $x(t)=u(t) e^{r t}$ and prove that this function is a solution if and only if $\ddot{x}=0$. Conclude that the general solution is $x=(A+B t) e^{r t}$.
8. Find the general solutions of the following equations for $t>0$:
a) $t^{2} \ddot{x}+5 t \dot{x}+3 x=0$
b) $t^{2} \ddot{x}-3 t \dot{x}+3 x=t^{2}$
9. Solve the differential equation $\ddot{x}+2 a \dot{x}-3 a^{2} x=100 e^{b t}$ for all values of the constants a and b.
10. Final Exam in GRA6035 30/05/2011, 3b

Find the general solution of the differential equation $y^{\prime \prime}+2 y^{\prime}-35 y=11 e^{t}-5$.

11. Final Exam in GRA6035 10/12/2010, 3b

Find the general solution of the differential equation $y^{\prime \prime}+y^{\prime}-6 y=t e^{t}$.

Solutions

11 We solve the differential equation by direct integration:
a) $\ddot{x}=t \Longrightarrow \dot{x}=\frac{1}{2} t^{2}+C_{1} \Longrightarrow x=\frac{1}{6} t^{3}+C_{1} t+C_{2}$
b) $\ddot{x}=e^{t}+t^{2} \Longrightarrow \dot{x}=e^{t}+\frac{1}{3} t^{3}+C_{1} \Longrightarrow x=e^{t}+\frac{1}{12} t^{4}+C_{1} t+C_{2}$

2 We have $\ddot{x}=t^{2}-t \Longrightarrow \dot{x}=\frac{1}{3} t^{3}-\frac{1}{2} t^{2}+C_{1} \Longrightarrow x=\frac{1}{12} t^{4}-\frac{1}{6} t^{3}+C_{1} t+C_{2}$. The initial condition $x(0)=1$ gives $\frac{1}{12} 0^{4}-\frac{1}{6} 0^{3}+C_{1} 0+C_{2}=C_{2}=1$, and $\dot{x}(0)=2$ gives $\frac{1}{3} 0^{3}-\frac{1}{2} 0+C_{1}=C_{1}=2$. The particular solution is therefore

$$
x(t)=\frac{1}{12} t^{4}-\frac{1}{6} t^{3}+2 t+1
$$

3 Substitute $u=\dot{x}$. Then $\ddot{x}=\dot{x}+t \Leftrightarrow \dot{u}=u+t \Leftrightarrow \dot{u}-u=t$. The integrating factor is e^{-t}, and we get

$$
u e^{-t}=\int t e^{-t} d t=-e^{-t}-t e^{-t}+C_{1}
$$

From this we obtain $u=\left(-e^{-t}-t e^{-t}+C_{1}\right) e^{t}=C_{1} e^{t}-t-1$ and we integrate to find x from $u=\dot{x}$, and get $x=\int\left(C_{1} e^{t}-t-1\right) d t=C_{1} e^{t}-t-\frac{1}{2} t^{2}+C_{2}$. The initial condition $x(0)=1$ gives $C_{1}+C_{2}=1 \Longrightarrow C_{2}=1-C_{1}$, and the condition $x(1)=2$ gives $C_{1} e-1-\frac{1}{2}+C_{2}=C_{1} e-3 / 2+1-C_{1}=2$. This gives $C_{1}(e-1)=5 / 2$, or

$$
C_{1}=\frac{5}{2(e-1)}, \quad C_{2}=1-\frac{5}{2(e-1)}=\frac{2 e-7}{2(e-1)}
$$

The particular solution is therefore

$$
x(t)=\frac{5}{2(e-1)} \cdot e^{t}-t-\frac{1}{2} t^{2}+\frac{2 e-7}{2(e-1)}
$$

4
a) The characteristic equation is $r^{2}-3 r=0 \Longrightarrow r=0,3 \Longrightarrow x(t)=C_{1}+C_{2} e^{3 t}$.
b) Characteristic equation is $r^{2}+4 r+8=0$. This has no real solutions. Thus we put $\alpha=-\frac{1}{2} a=-\frac{1}{2} 4=-2, \beta=\sqrt{b-\frac{1}{4} a^{2}}=\sqrt{8-\frac{1}{4} 4^{2}}=2$. From this the general solution is $x(t)=e^{\alpha t}(A \cos \beta t+B \sin \beta t)=e^{-2 t}(A \cos 2 t+B \sin 2 t)$.
c) $3 \ddot{x}+8 \dot{x}=0 \Longleftrightarrow \ddot{x}+\frac{8}{3} \dot{x}=0$. The characteristic equation is $r^{2}+\frac{8}{3} r=0 \Longrightarrow r=0$ or $r=-\frac{8}{3}$. The general solution is $x(t)=C_{1} e^{0 t}+C_{2} e^{-\frac{8}{3} t}=C_{1}+C_{2} e^{-\frac{8}{3} t}$.
d) $4 \ddot{x}+4 \dot{x}+x=0$ has characteristic equation $4 r^{2}+4 r+1=0$. There is one solution $r=-\frac{1}{2}$. The general solution is $x(t)=\left(C_{1}+C_{2} t\right) e^{-\frac{1}{2} t}$.
e) First we solve the homogenous equation $\ddot{x}+\dot{x}-6 x=8$. The characteristic equation is $r^{2}+r-6=0$. It has the solutions $r=-3$ and $r=2$. The general solution of the homogenous equation is thus

$$
x_{h}(t)=C_{1} e^{-3 t}+C_{2} e^{2 t}
$$

In order to find the general solution of the non-homogenous equation $\ddot{x}+\dot{x}-6 x=$ 8 , we need to find a particular solution and we guess on a solution of the form $x_{p}(t)=A$ for some constant A. Putting this into the equation gives $A=-\frac{8}{6}=$ $-\frac{4}{3}$. Thus the general solution is

$$
x(t)=-\frac{4}{3}+C_{1} e^{-3 t}+C_{2} e^{2 t}
$$

f) We first solve the homogenous equation $\ddot{x}+3 \dot{x}+2 x=0$. The characteristic equation is $r^{2}+3 r+2=0$. The solutions are $r=-1$ and $r=-2$. The general solution of the homogenous equation is thus

$$
x_{h}(t)=C_{1} e^{-t}+C_{2} e^{-2 t}
$$

To find a solution of the non-homogenous equation $\ddot{x}+3 \dot{x}+2 x=e^{5 t}$, we guess on a solution of the form $x_{p}(t)=A e^{5 t}$. We have that

$$
\dot{x}_{p}=5 A e^{5 t} \text { and } \ddot{x}_{p}=25 A e^{5 t}
$$

Putting this into the equation we obtain

$$
25 A e^{5 t}+3 \cdot 5 A e^{5 t}+2 A e^{5 t}=e^{5 t}
$$

From this we get $42 A e^{5 t}=e^{5 t}$ and we must have $A=\frac{1}{42}$. Thus the solution is

$$
x(t)=\frac{1}{42} e^{5 t}+C_{1} e^{-t}+C_{2} e^{-2 t}
$$

5
a) We first solve $\ddot{x}-x=0$. The characteristic equation is $r^{2}-1=0$. We get $x_{h}=$ $C_{1} e^{-t}+C_{2} e^{t}$. To find a solution of $\ddot{x}-x=e^{-t}$, we guess on solution of the form $x_{p}=A e^{-t}$. We have $\dot{x}_{p}=-A e^{-t}$ and $\ddot{x}_{p}=A e^{-t}$. Putting this into the left hand side of the equation, we get

$$
A e^{-t}-\left(A e^{-t}\right)=0
$$

So this does not work. The reason is that e^{-t} is a solution of the homogenous equation. We try something else: $x_{p}=A t e^{-t}$. This gives

$$
\begin{aligned}
\dot{x}_{p} & =A\left(e^{-t}-t e^{-t}\right) \\
\ddot{x}_{p} & =A\left(-e^{-t}-\left(e^{-t}-t e^{-t}\right)\right) \\
& =A e^{-t}(t-2)
\end{aligned}
$$

Putting this into the left hand side of the equation, we obtain

$$
\begin{aligned}
\ddot{x}_{p}-x_{p} & =A e^{-t}(t-2)-A t e^{-t} \\
& =-2 A e^{-t}
\end{aligned}
$$

We get a solution for $A=-\frac{1}{2}$. Thus the general solution is

$$
x(t)=-\frac{1}{2} t e^{-t}+C_{1} e^{-t}+C_{2} e^{t}
$$

b) The equation is equivalent to

$$
\ddot{x}-10 \dot{x}+25 x=\frac{2}{3} t+\frac{1}{3}
$$

We first solve the homogenous equation for which the characteristic equation is

$$
r^{2}-10 r+25=0
$$

This has one solution $r=5$. The general homogenous solution is thus

$$
x_{h}=\left(C_{1}+C_{2} t\right) e^{5 t}
$$

To find a particular solution, we try

$$
x_{p}=A t+B
$$

We have $\dot{x}_{p}=A$ and $\ddot{x}_{p}=0$. Putting this into the equation, we obtain

$$
0-10 A+25(A t+B)=\frac{2}{3} t+\frac{1}{3}
$$

We obtain $25 A=\frac{2}{3}$ and $-10 A+25 B=\frac{1}{3}$. From this we get $A=\frac{2}{75}$ and $-\frac{20}{75}+$ $25 B=\frac{25}{75} \Longrightarrow B=\frac{45}{25 \cdot 75}=\frac{3}{125}$. Thus

$$
x(t)=\frac{2}{75} t+\frac{3}{125}+\left(C_{1}+C_{2} t\right) e^{5 t}
$$

6
a) We first solve the homogenous equation $\ddot{x}+2 \dot{x}+x=0$. The characteristic equation is $r^{2}+2 r+1=0$ which has the one solution, $r=-1$. We get

$$
x_{h}(t)=\left(C_{1}+C_{2} t\right) e^{-t}
$$

To find a particular solution we try with $x_{p}=A t^{2}+B t+C$. We get $\dot{x}_{p}=2 A t+B$ and $\ddot{x}_{p}=2 A$. Substituting this into the left hand side of the equation, we get

$$
\begin{aligned}
& 2 A+2(2 A t+B)+\left(A t^{2}+B t+C\right) \\
& =2 A+2 B+C+(4 A+B) t+A t^{2}
\end{aligned}
$$

We get $A=1,(4 A+B)=0$ and $2 A+2 B+C=0$. We obtain $A=1, B=-4$ and $C=-2 A-2 B=-2+8=6$. Thus the general solution is

$$
x(t)=t^{2}-4 t+6+\left(C_{1}+C_{2} t\right) e^{-t} .
$$

We get $\dot{x}=2 t-4+C_{2} e^{-t}+\left(C_{1}+C_{2} t\right) e^{-t}(-1)=2 t-C_{1} e^{-t}+C_{2} e^{-t}-t C_{2} e^{-t}-$ 4. From $x(0)=0$ we get $6+C_{1}=0 \Longrightarrow C_{1}=-6$. From $\dot{x}(0)=1$, we get $-C_{1}+C_{2}-4=1 \Longrightarrow C_{2}=5+C_{1}=5-6=-1$. Thus we have

$$
x(t)=t^{2}-4 t+6-(6+t) e^{-t} .
$$

b) We first solve the homogenous equation $\ddot{x}+4 x=0$. The characteristic equation $r^{2}+4=0$ has no solutions, so we put $\alpha=-\frac{1}{2} 0=0$ and $\beta=\sqrt{4-\frac{1}{2} 0}=2$. This gives $x_{h}=e^{\alpha t}\left(C_{1} \cos \beta t+C_{2} \sin \beta t\right)=C_{1} \cos 2 t+C_{2} \sin 2 t$. To find a solution of $\ddot{x}+4 x=4 t+1$ we try $x_{p}=A+B t$. This gives $\dot{x}_{p}=B$ and $\ddot{x}_{p}=0$. Putting this into the equation, we find that

$$
\ddot{x}_{p}+4 x_{p}=0+4(A+B t)=4 A+4 B t=4 t+1 .
$$

This implies that $B=1$ and $A=\frac{1}{4}$. Thus

$$
x(t)=C_{1} \cos 2 t+C_{2} \sin 2 t+\frac{1}{4}+t
$$

$7 x=u e^{r t} \Longrightarrow \dot{x}=\dot{u} e^{r t}+u r e^{r t}=e^{r t}(\dot{u}+u r) \Longrightarrow \ddot{x}=\ddot{u} e^{r t}+\dot{u} r e^{r t}+r\left(\dot{u} e^{r t}+u r e^{r t}\right)=$ $e^{r t}\left(\ddot{u}+2 r \dot{u}+u r^{2}\right)$. From this we get

$$
\begin{aligned}
\ddot{x}+a \dot{x}+b x & =e^{r t}\left[\left(\ddot{u}+2 r \dot{u}+u r^{2}\right)+a(\dot{u}+u r)+b u\right] \\
& =e^{r t}\left[\ddot{u}+(2 r+a) \dot{u}+\left(r^{2}+a r+b\right) u\right]
\end{aligned}
$$

The characteristic equation is assumed to have one solution $r=\frac{-a}{2}$. Putting $r=\frac{-a}{2}$ into the expression we get

$$
\ddot{x}+a \dot{x}+b x=e^{r t} \ddot{u}
$$

So $x=u e^{r t}$ is a solution if and only if $e^{r t} \ddot{u}=0 \Leftrightarrow \ddot{u}=0$. The differential equation $\ddot{u}=0$ has the general solution $u=A+B t$. Thus $x=(A+B t) e^{r t}$ is the general solution of $\ddot{x}+a \dot{x}+b x=0$.

8
a) Substituting $t=e^{s}$ transforms the equation into $x^{\prime \prime}(s)+4 x^{\prime}(s)+3 x^{\prime}(s)=0$. The characteristic equation is $r^{2}+4 r+3=0$. The solutions are $r=-3,-1$. Thus $x(s)=C_{1} e^{-3 t}+C_{2} e^{-t}$. Substituting $s=\ln t$ gives $x(t)=C_{1} t^{-3}+C_{2} t^{-1}$.
b) Substituting $t=e^{s}$ transforms the equation into $x^{\prime \prime}(s)-4 x^{\prime}(s)+3 x^{\prime}(s)=\left(e^{s}\right)^{2}=$ $e^{2 s}$. First we solve the homogenous equation $x^{\prime \prime}(s)-5 x^{\prime}(s)+3 x^{\prime}(s)=0$. The characteristic equation is $r^{2}-4 r+3=0$, and has the solutions $r=1$ and $r=3$. Thus $x_{h}=C_{1} e^{s}+C_{2} e^{3 s}$. To find a particular solution of $x^{\prime \prime}(s)-4 x^{\prime}(s)+3 x(s)=$ $\left(e^{s}\right)^{2}=e^{2 s}$ we try $x_{p}=A e^{2 s}$. We have $x_{p}^{\prime}=2 A e^{2 s}$ and $x_{p}^{\prime \prime}=4 A e^{2 s}$. Substituting
this into the equation, gives

$$
\begin{aligned}
x^{\prime \prime}(s)-4 x^{\prime}(s)+3 x(s) & =4 A e^{2 s}-4 \cdot 2 A e^{2 s}+3 \cdot A e^{2 s} \\
& =-A e^{2 s}
\end{aligned}
$$

Thus we get $A=-1$, and

$$
x(s)=C_{1} e^{s}+C_{2} e^{3 s}-e^{2 s}
$$

Substituting $s=\ln t$ gives

$$
x(t)=C_{1} t+C_{2} t^{3}-t^{2}
$$

9 If $a \neq 0$ we get the general solution

$$
x=100 \frac{e^{b t}}{2 a b-3 a^{2}+b^{2}}+C_{1} e^{a t}+C_{2} e^{-3 a t}
$$

provided that $2 a b-3 a^{2}+b^{2} \neq 0$. When $a=0$ and $b \neq 0$ we get the general solution

$$
x=C_{1}+\frac{100}{b^{2}} e^{b t}+C_{2} t
$$

There are also some other cases to consider, see answers in FMEA ex.6.3.9.
10 The homogeneous equation $y^{\prime \prime}+2 y^{\prime}-35 y=0$ has characteristic equation $r^{2}+$ $2 r-35=0$ and roots $r=5$ and $r=-7$, so $y_{h}=C_{1} e^{5 t}+C_{2} e^{-7 t}$. We try to find a particular solution of the form $y=A e^{t}+B$, which gives

$$
y^{\prime}=y^{\prime \prime}=A e^{t}
$$

Substitution in the differential equation gives

$$
A e^{t}+2 A e^{t}-35\left(A e^{t}+B\right)=11 e^{t}-5 \Leftrightarrow-32 A=11 \text { and }-35 B=-5
$$

This gives $A=-11 / 32$ and $B=1 / 7$. Hence the general solution of the differential equation is $y=y_{h}+y_{p}=C_{1} e^{5 t}+C_{2} e^{-7 t}-\frac{11}{32} e^{t}+\frac{1}{7}$

11 The homogeneous equation $y^{\prime \prime}+y^{\prime}-6 y=0$ has characteristic equation $r^{2}+r-$ $6=0$ and roots $r=2$ and $r=-3$, so $y_{h}=C_{1} e^{2 t}+C_{2} e^{-3 t}$. We try to find a particular solution of the form $y=(A t+B) e^{t}$, which gives

$$
y^{\prime}=(A t+A+B) e^{t}, \quad y^{\prime \prime}=(A t+2 A+B) e^{t}
$$

Substitution in the differential equation gives

$$
(A t+2 A+B) e^{t}+(A t+A+B) e^{t}-6(A t+B) e^{t}=t e^{t} \Leftrightarrow-4 A=1 \text { and } 3 A-4 B=0
$$

This gives $A=-1 / 4$ and $B=-3 / 16$. Hence the general solution of the differential equation is $y=y_{h}+y_{p}=C_{1} e^{2 t}+C_{2} e^{-3 t}-\left(\frac{1}{4} t+\frac{3}{16}\right) e^{t}$

