

Solutions:	GRA 60352	Mathematic	S			
Examination date:	19.04.2012	09:00 - 10:00	Total no. of pages:	2		
			No. of attachments:	0		
Permitted examination	A bilingual dictionary and BI-approved calculator TEXAS					
support material:	INSTRUMENTS BA II Plus					
Answer sheets:	Answer sheet for multiple-choice examinations					
	Counts 20%	of GRA 6035	The questions are we	eighted equally		
Re-sit exam			Responsible departm	ent: Economics		

Correct answers: B-A-D-C-A-D-C-B

QUESTION 1.

We reduce the augmented matrix to echelon form:

	C	,														
(1	2	3	4	0		(1	2	3	4	0)		(1)	2	3	4	$\begin{pmatrix} 0 \\ 3 \\ -7 \\ 13 \end{pmatrix}$
				3		0	1	1	1	3 -7	>	0	1	1	1	3
				-4								0	0	1	3	-7
$\int 0$	1	3	9	2		$\left(0 \right)$	0	2	8	$\left -1\right $		0	0	0	2	$13 \int$

From the pivot positions, we see that the system has a unique solution. The correct answer is alternative \mathbf{B} .

QUESTION 2.

We form the matrix A with the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ as columns, and reduce A to an echelon form:

	± /		,	
$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$		$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$		$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{pmatrix}$
1 2 4	>	0 1 3	>	$0 \ 1 \ 3$
$\begin{pmatrix} 1 & 3 & 9 \end{pmatrix}$		$\begin{pmatrix} 0 & 2 & 8 \end{pmatrix}$		$\begin{pmatrix} 0 & 0 & 2 \end{pmatrix}$

From the pivot positions, we see that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent. Hence the correct answer is alternative \mathbf{A} .

QUESTION 3.

We reduce the matrix A to an echelon form:

$$A = \begin{pmatrix} 1 & 2 & -2 & 1 \\ 2 & 1 & -1 & 2 \\ 6 & 6 & 1 & h - 1 \end{pmatrix} \xrightarrow{- \to +} \begin{pmatrix} 1 & 2 & -2 & 1 \\ 0 & -3 & 3 & 0 \\ 0 & -6 & 13 & h - 7 \end{pmatrix} \xrightarrow{- \to +} \begin{pmatrix} 1 & 2 & -2 & 1 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 7 & h - 7 \end{pmatrix}$$

We see that the rank of A is three for all values of h, and the correct answer is alternative **D**.

QUESTION 4.

The characteristic equation of A is $\lambda^2 - 10\lambda + 25 = 0$, and therefore there is only one (double) eigenvalue $\lambda = 5$. The correct answer is alternative **C**.

QUESTION 5.

The eigenvalues of A are $\lambda = 1$ (with multiplicity two) and $\lambda = -1$, since we have

$$\det(A - \lambda I) = \begin{pmatrix} 1 - \lambda & h & -2h \\ 0 & -1 - \lambda & 4 \\ 0 & 0 & 1 - \lambda \end{pmatrix} = (1 - \lambda)^2 (-1 - \lambda) = 0$$

We compute the eigenvectors of $\lambda = 1$, the eigenvalue of multiplicity 2, by reducing the matrix A - I to an echelon form:

We see that there are two degrees of freedom for all values of h. Therefore, A is diagonalizable for all values of h and the correct answer is alternative \mathbf{A} .

QUESTION 6.

The symmetric matrix of the quadratic form $Q(x_1, x_2) = 4x_1^2 - 15x_1x_2 + 36x_2^2$ is

$$A = \begin{pmatrix} 4 & -15/2 \\ -15/2 & 36 \end{pmatrix}$$

The leading principal minors are $D_1 = 4$ and $D_2 = 4 \cdot 36 - (-15/2)^2 > 0$. Therefore A is positive definite, and the correct answer is alternative **D**.

QUESTION 7.

We compute the Hessian matrix of $f(x, y, z) = \ln(x + y + z)$: First, we compute the first order partial derivatives

$$f'_x = f'_y = f'_z = \frac{1}{x + y + z}$$

and then we compute the second order partial derivatives and form the Hessian matrix

$$H(f) = -\frac{1}{(x+y+z)^2} \begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix}$$

The principal minors of order one are all equal to $-1/(x + y + z)^2 < 0$, and all principal minors of higher order are zero. It follows that f is concave but not convex. The correct answer is alternative **C**.

QUESTION 8.

The shaded region in the figure is closed and bounded, but not convex. The correct answer is alternative \mathbf{B} .