Solutions:	GRA 60352	Mathematics		
Examination date:	19.04.2012	$09: 00-10: 00$	Total no. of pages:	2
No. of attachments: 0				

Correct answers: B-A-D-C-A-D-C-B

Question 1.
We reduce the augmented matrix to echelon form:

$$
\left.\left(\begin{array}{cccc|c}
1 & 2 & 3 & 4 & 0 \\
0 & 1 & 1 & 1 & 3 \\
0 & 1 & 2 & 4 & -4 \\
0 & 1 & 3 & 9 & 2
\end{array}\right) \xrightarrow{1} \begin{array}{cccc|c}
1 & 2 & 3 & 4 & 0 \\
0 & 1 & 1 & 1 & 3 \\
0 & 0 & 1 & 3 & -7 \\
0 & 0 & 2 & 8 & -1
\end{array}\right) \xrightarrow{-3}\left(\begin{array}{cccc|c}
1 & 2 & 3 & 4 & 0 \\
0 & 1 & 1 & 1 & 3 \\
0 & 0 & 1 & 3 & -7 \\
0 & 0 & 0 & 2 & 13
\end{array}\right)
$$

From the pivot positions, we see that the system has a unique solution. The correct answer is alternative \mathbf{B}.

Question 2.

We form the matrix A with the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ as columns, and reduce A to an echelon form:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right) \xrightarrow{\left.\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 2 & 8
\end{array}\right) \xrightarrow{ }\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 2
\end{array}\right)\right)\left(\begin{array}{lll}
\\
0
\end{array}\right)}
$$

From the pivot positions, we see that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent. Hence the correct answer is alternative \mathbf{A}.

Question 3.
We reduce the matrix A to an echelon form:

$$
A=\left(\begin{array}{cccc}
1 & 2 & -2 & 1 \\
2 & 1 & -1 & 2 \\
6 & 6 & 1 & h-1
\end{array}\right) \xrightarrow{\rightarrow}\left(\begin{array}{cccc}
1 & 2 & -2 & 1 \\
0 & -3 & 3 & 0 \\
0 & -6 & 13 & h-7
\end{array}\right) \xrightarrow{\rightarrow}\left(\begin{array}{cccc}
1 & 2 & -2 & 1 \\
0 & -3 & 3 & 0 \\
0 & 0 & 7 & h-7
\end{array}\right)
$$

We see that the rank of A is three for all values of h, and the correct answer is alternative \mathbf{D}.

Question 4.

The characteristic equation of A is $\lambda^{2}-10 \lambda+25=0$, and therefore there is only one (double) eigenvalue $\lambda=5$. The correct answer is alternative \mathbf{C}.

Question 5.

The eigenvalues of A are $\lambda=1$ (with multiplicity two) and $\lambda=-1$, since we have

$$
\operatorname{det}(A-\lambda I)=\left(\begin{array}{ccc}
1-\lambda & h & -2 h \\
0 & -1-\lambda & 4 \\
0 & 0 & 1-\lambda
\end{array}\right)=(1-\lambda)^{2}(-1-\lambda)=0
$$

We compute the eigenvectors of $\lambda=1$, the eigenvalue of multiplicity 2 , by reducing the matrix $A-I$ to an echelon form:

$$
\left(\begin{array}{ccc}
0 & h & -2 h \\
0 & -2 & 4 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{-\rightarrow}\left(\begin{array}{ccc}
0 & -2 & 4 \\
0 & h & -2 h \\
0 & 0 & 0
\end{array}\right) \xrightarrow{0}\left(\begin{array}{ccc}
0 & -2 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We see that there are two degrees of freedom for all values of h. Therefore, A is diagonalizable for all values of h and the correct answer is alternative \mathbf{A}.

Question 6.

The symmetric matrix of the quadratic form $Q\left(x_{1}, x_{2}\right)=4 x_{1}^{2}-15 x_{1} x_{2}+36 x_{2}^{2}$ is

$$
A=\left(\begin{array}{cc}
4 & -15 / 2 \\
-15 / 2 & 36
\end{array}\right)
$$

The leading principal minors are $D_{1}=4$ and $D_{2}=4 \cdot 36-(-15 / 2)^{2}>0$. Therefore A is positive definite, and the correct answer is alternative \mathbf{D}.

Question 7.

We compute the Hessian matrix of $f(x, y, z)=\ln (x+y+z)$: First, we compute the first order partial derivatives

$$
f_{x}^{\prime}=f_{y}^{\prime}=f_{z}^{\prime}=\frac{1}{x+y+z}
$$

and then we compute the second order partial derivatives and form the Hessian matrix

$$
H(f)=-\frac{1}{(x+y+z)^{2}}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

The principal minors of order one are all equal to $-1 /(x+y+z)^{2}<0$, and all principal minors of higher order are zero. It follows that f is concave but not convex. The correct answer is alternative C.

Question 8.

The shaded region in the figure is closed and bounded, but not convex. The correct answer is alternative \mathbf{B}.

