## BI

| Solutions: | GRA 60352 | Mathematics |
| :--- | :--- | :--- |
| Examination date: | $07.02 .2012 \quad 15: 00-16: 00 \quad$ Total no. of pages: 2 |  |
|  |  |  |
| No. of attachments: 0 |  |  |

## Correct answers: A-A-D-B-C-B-C-B

## Question 1.

We reduce the augmented matrix to echelon form:

$$
\left(\begin{array}{cccc|c}
1 & 2 & 3 & 4 & 0 \\
0 & -1 & 1 & 1 & 3 \\
0 & 1 & -1 & -1 & -4 \\
0 & 1 & 1 & -1 & 2
\end{array}\right) \xrightarrow{1}\left(\begin{array}{cccc|c}
1 & 2 & 3 & 4 & 0 \\
0 & -1 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 2 & 0 & 5
\end{array}\right) \xrightarrow[\rightarrow]{ }\left(\begin{array}{cccc|c}
1 & 2 & 3 & 4 & 0 \\
0 & -1 & 1 & 1 & 3 \\
0 & 0 & 2 & 0 & 5 \\
0 & 0 & 0 & 0 & -1
\end{array}\right)
$$

From the pivot positions, we see that the system is inconsistent. The correct answer is alternative $\mathbf{A}$.

## Question 2.

We form the matrix $A$ with the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ as columns, and reduce $A$ to an echelon form:

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & -1 & 32 \\
7 & 3 & 16
\end{array}\right) \xrightarrow{ } \text { ( } \quad\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -7 & 23 \\
0 & -11 & -5
\end{array}\right) \xrightarrow{2}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -7 & 23 \\
0 & 0 & *
\end{array}\right)
$$

where $*=-5-11 \cdot 23 / 7 \neq 0$. From the pivot positions, we see that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent. Hence the correct answer is alternative $\mathbf{A}$.

## Question 3.

We reduce the matrix $A$ to an echelon form:

$$
A=\left(\begin{array}{cccc}
1 & 2 & -2 & 1 \\
2 & 1 & -1 & 2 \\
7 & 8 & -1 & h
\end{array}\right) \xrightarrow{-\cdots}\left(\begin{array}{cccc}
1 & 2 & -2 & 1 \\
0 & -3 & 3 & 0 \\
0 & -6 & 13 & h-7
\end{array}\right) \xrightarrow[\rightarrow]{ }\left(\begin{array}{cccc}
1 & 2 & -2 & 1 \\
0 & -3 & 3 & 0 \\
0 & 0 & 7 & h-7
\end{array}\right)
$$

We see that the rank of $A$ is three for all values of $h$, and the correct answer is alternative $\mathbf{D}$.

## Question 4.

The characteristic equation of $A$ is $\lambda^{2}-12 \lambda+32=0$, and therefore the eigenvalues are $\lambda=4$ and $\lambda=8$. The correct answer is alternative $\mathbf{B}$.

## Question 5.

The eigenvalues of $A$ are $\lambda=1$ (with multiplicity two) and $\lambda=2$, since we have

$$
\operatorname{det}(A-\lambda I)=\left(\begin{array}{ccc}
1-\lambda & h & h^{2} \\
0 & 2-\lambda & 4 \\
0 & 0 & 1-\lambda
\end{array}\right)=(1-\lambda)^{2}(2-\lambda)=0
$$

We compute the eigenvectors of $\lambda=1$, the eigenvalue of multiplicity 2 , by reducing the matrix $A-I$ to an echelon form:

$$
\left(\begin{array}{ccc}
0 & h & h^{2} \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{ } \text { ) }\left(\begin{array}{ccc}
0 & 0 & h^{2}-4 h \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{0}\left(\begin{array}{ccc}
0 & 1 & 4 \\
0 & 0 & h^{2}-4 h \\
0 & 0 & 0
\end{array}\right)
$$

We see that there are two degrees of freedom if $h=0,4$, and one degree of freedom otherwise. Therefore, $A$ is diagonalizable if and only if $h=0,4$, and the correct answer is alternative $\mathbf{C}$.

## Question 6.

The symmetric matrix of the quadratic form $Q\left(x_{1}, x_{2}\right)=-4 x_{1}^{2}+24 x_{1} x_{2}-36 x_{2}^{2}$ is

$$
A=\left(\begin{array}{cc}
-4 & 12 \\
12 & -36
\end{array}\right)
$$

The principal minors are $\Delta_{1}=-4,-36$ and $\Delta_{2}=0$. Therefore $A$ is negative semidefinite but not negative definite, and the correct answer is alternative $\mathbf{B}$.

## Question 7.

We compute the Hessian matrix of $f(x, y, z)=-e^{x+y+z}$ : First, we compute the first order partial derivatives

$$
f_{x}^{\prime}=f_{y}^{\prime}=f_{z}^{\prime}=-e^{x+y+z}
$$

and then we compute the second order partial derivatives and form the Hessian matrix

$$
H(f)=\left(\begin{array}{lll}
-e^{x+y+z} & -e^{x+y+z} & -e^{x+y+z} \\
-e^{x+y+z} & -e^{x+y+z} & -e^{x+y+z} \\
-e^{x+y+z} & -e^{x+y+z} & -e^{x+y+z}
\end{array}\right)
$$

The principal minors are $\Delta_{1}=-e^{x+y+z},-e^{x+y+z},-e^{x+y+z}, \Delta_{2}=0,0,0$ and $\Delta_{3}=0$. Since $-e^{x+y+z}<0$, it follows that $f$ is concave but not convex. The correct answer is alternative $\mathbf{C}$.

## Question 8.

The set $S=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4\right\}$ of $\mathbb{R}^{2}$ is shown as the shaded region in the figure. We see that it is closed, since the boundary points are the two circles given by $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$, and these circles are included in the set. We also see that the set is bounded. It is not convex, since the set has a hole. The correct answer is alternative $\mathbf{B}$.

