

Solutions:	GRA 60352	52 Mathematics							
Examination date:	07.02.2012	15:00 - 16:00	Total no. of pages:	2					
			No. of attachments:	0					
Permitted examination	A bilingual dictionary and BI-approved calculator TEXAS								
support material:	INSTRUMENTS BA II Plus								
Answer sheets:	Answer sheet for multiple-choice examinations								
	Counts 20%	of GRA 6035	The questions are we	eighted equally					
Extraordinary re-sit exam			Responsible departm	ent: Economics					

Correct answers: A-A-D-B-C-B-C-B

QUESTION 1.

We reduce the augmented matrix to echelon form:

		0															
(1)	2	3	4	0		(1	2	3	4	$\begin{vmatrix} 0 \\ 3 \\ -1 \end{vmatrix}$	>	(1)	2	3	4	$\begin{vmatrix} 0\\ 3\\ 5\\ -1 \end{pmatrix}$	
0	-1	1	1	3		0	-1	1	1	3		0	-1	1	1	3	
0	1	-1	-1	-4								0	0	2	0	5	
0	1	1	-1	2		$\int 0$	0	2	0	5 /		0	0	0	0	$\left -1\right $	

From the pivot positions, we see that the system is inconsistent. The correct answer is alternative **A**.

QUESTION 2.

We form the matrix A with the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ as columns, and reduce A to an echelon form:

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & -1 & 32 \\ 7 & 3 & 16 \end{pmatrix} \xrightarrow{- - \ast} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -7 & 23 \\ 0 & -11 & -5 \end{pmatrix} \xrightarrow{- - \ast} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -7 & 23 \\ 0 & 0 & * \end{pmatrix}$$

where $* = -5 - 11 \cdot 23/7 \neq 0$. From the pivot positions, we see that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent. Hence the correct answer is alternative **A**.

QUESTION 3.

We reduce the matrix A to an echelon form:

We see that the rank of A is three for all values of h, and the correct answer is alternative **D**.

QUESTION 4.

The characteristic equation of A is $\lambda^2 - 12\lambda + 32 = 0$, and therefore the eigenvalues are $\lambda = 4$ and $\lambda = 8$. The correct answer is alternative **B**.

QUESTION 5.

The eigenvalues of A are $\lambda = 1$ (with multiplicity two) and $\lambda = 2$, since we have

$$\det(A - \lambda I) = \begin{pmatrix} 1 - \lambda & h & h^2 \\ 0 & 2 - \lambda & 4 \\ 0 & 0 & 1 - \lambda \end{pmatrix} = (1 - \lambda)^2 (2 - \lambda) = 0$$

We compute the eigenvectors of $\lambda = 1$, the eigenvalue of multiplicity 2, by reducing the matrix A - I to an echelon form:

We see that there are two degrees of freedom if h = 0, 4, and one degree of freedom otherwise. Therefore, A is diagonalizable if and only if h = 0, 4, and the correct answer is alternative **C**.

QUESTION 6.

The symmetric matrix of the quadratic form $Q(x_1, x_2) = -4x_1^2 + 24x_1x_2 - 36x_2^2$ is

$$A = \begin{pmatrix} -4 & 12\\ 12 & -36 \end{pmatrix}$$

The principal minors are $\Delta_1 = -4, -36$ and $\Delta_2 = 0$. Therefore A is negative semidefinite but not negative definite, and the correct answer is alternative **B**.

QUESTION 7.

We compute the Hessian matrix of $f(x, y, z) = -e^{x+y+z}$: First, we compute the first order partial derivatives

$$f'_x = f'_y = f'_z = -e^{x+y+z}$$

and then we compute the second order partial derivatives and form the Hessian matrix

$$H(f) = \begin{pmatrix} -e^{x+y+z} & -e^{x+y+z} & -e^{x+y+z} \\ -e^{x+y+z} & -e^{x+y+z} & -e^{x+y+z} \\ -e^{x+y+z} & -e^{x+y+z} & -e^{x+y+z} \end{pmatrix}$$

The principal minors are $\Delta_1 = -e^{x+y+z}, -e^{x+y+z}, -e^{x+y+z}, \Delta_2 = 0, 0, 0$ and $\Delta_3 = 0$. Since $-e^{x+y+z} < 0$, it follows that f is concave but not convex. The correct answer is alternative **C**.

QUESTION 8.

The set $S = \{(x, y) : 1 \le x^2 + y^2 \le 4\}$ of \mathbb{R}^2 is shown as the shaded region in the figure. We see that it is closed, since the boundary points are the two circles given by $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$, and these circles are included in the set. We also see that the set is bounded. It is not convex, since the set has a hole. The correct answer is alternative **B**.