Examination date: $\quad 30.09 .2011,14: 00-15: 00$
Permitted examination aids: Bilingual dictionary
BI-approved exam calculator: Texas Instruments BA II Plus ${ }^{\text {TM }}$
Answer sheet for multiple choice examinations
5
1 (example of how to use the answer sheet)

## PLEASE READ THE FOLLOWING BEFORE YOU BEGIN!

- Students must themselves assure that the examination papers are complete.
- Students must provide the following information on the answer sheet:
- Examination code
- Personal initials
- ID number

The student registration number must be recorded with both the appropriate numbers and by putting an " X " by the corresponding number in the columns below.

- Pens with green ink and pencils cannot be used in filling in answer sheets. Answer sheets must not be used for writing rough drafts.
- All answers must be recorded with an "X" under the letter you believe corresponds with the correct answer.
- Cancel an "X" by filling in the box completely (boxes that are completely filled in will not be registered). " $X$ " in two boxes for one question will be registered as a wrong answer.
- The attached example shows you how the answer sheet would be filled in if A were the correct answer for question 1, B correct for question 2, C correct for question 3 and D correct for question 4. An " X " under E indicates that you choose not to answer question 5.
- Your answers are to be recorded on the answer sheet. Answers written on the examination papers and not on the answer sheets will not be graded.
- There is only one right answer for each question. Because the questions are weighted equally, it can be to your advantage to answer the simplest questions first.
- Wrong answers are given -1 point, unanswered questions get 0 points (indicated by an "X" next to E") and correct answers are given 3 points.
- You can keep the examination papers.


## Good luck!

## This exam has 8 questions

## Question 1.

Consider the linear system with augmented matrix

$$
\left(\begin{array}{cccc|c}
1 & 2 & 3 & 4 & 0 \\
0 & -1 & 1 & 1 & 3 \\
0 & 1 & -1 & 1 & -4 \\
0 & 1 & 1 & -1 & 2
\end{array}\right)
$$

Which statement is true?
(A) The linear system is inconsistent.
(B) The linear system has a unique solution.
(C) The linear system has one degree of freedom
(D) The linear system has two degrees of freedom
(E) I prefer not to answer.

## Question 2.

Consider the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, given by

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
3 \\
7
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
3 \\
16 \\
32
\end{array}\right)
$$

## Which statement is true?

(A) The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent
(B) The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ are linearly independent, and $\mathbf{v}_{3}$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$
(C) The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ are linearly independent, but $\mathbf{v}_{3}$ is not a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$
(D) The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ are linearly dependent
(E) I prefer not to answer.

Question 3.

Compute the rank of the matrix

$$
A=\left(\begin{array}{llll}
1 & 2 & -2 & 1 \\
2 & 1 & -1 & 2 \\
7 & 8 & -8 & h
\end{array}\right)
$$

Which statement is true?
(A) $\operatorname{rk} A=2$ for all $h$
(B) $\operatorname{rk} A=2$ for $h \neq 7$ and $\operatorname{rk} A=3$ for $h=7$
(C) $\operatorname{rk} A=3$ for $h \neq 7$ and $r k A=2$ for $h=7$
(D) $\operatorname{rk} A=3$ for all $h$
(E) I prefer not to answer.

Consider the matrix

$$
A=\left(\begin{array}{ll}
4 & 3 \\
1 & 6
\end{array}\right)
$$

## Which statement is true?

(A) $A$ has eigenvalues $\lambda=4$ and $\lambda=6$
(B) $A$ has eigenvalues $\lambda=2$ and $\lambda=8$
(C) $A$ has a single eigenvalue $\lambda=3$
(D) $A$ has eigenvalues $\lambda=3$ and $\lambda=7$
(E) I prefer not to answer.

## Question 5.

Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & h & h^{2} \\
0 & 1 & h+4 \\
0 & 0 & 2
\end{array}\right)
$$

## Which statement is true?

(A) $A$ is diagonalizable for all $h$
(B) $A$ is diagonalizable if $h=-4$, and non-diagonalizable for $h \neq-4$
(C) $A$ is diagonalizable if $h=0$, and non-diagonalizable for $h \neq 0$
(D) $A$ is non-diagonalizable for all $h$
(E) I prefer not to answer.

Question 6.

Consider the quadratic form

$$
Q\left(x_{1}, x_{2}\right)=3 x_{1}^{2}-24 x_{1} x_{2}+48 x_{2}^{2}
$$

Which statement is true?
(A) $Q$ is positive semidefinite but not positive definite
(B) $Q$ is negative semidefinite but not negative definite
(C) $Q$ is indefinite
(D) $Q$ is positive definite
(E) I prefer not to answer.

Question 7.

Consider the function $f$ defined on $\mathbb{R}^{3}$, given by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}
$$

## Which statement is true?

(A) $f$ is a convex function but not a concave function
(B) $f$ is a convex function and a concave function
(C) $f$ is not a convex function but a concave function
(D) $f$ is neither a convex nor a concave function
(E) I prefer not to answer.


## Question 8.

Consider the subset $S=\left\{(x, y): 3 x^{2}-12 x y+48 y^{2} \leq 12\right\}$ of $\mathbb{R}^{2}$, which is shown as the shaded region in the figure.

## Which statement is true?

(A) $S$ is a convex set that is closed and bounded
(B) $S$ is not a convex set, but it is closed and bounded
(C) $S$ is a convex set that is closed but not bounded
(D) $S$ is a convex set that is bounded but not closed
(E) I prefer not to answer.

