Department of Economics

Solutions: GRA 60352 Mathematics
Examination date:
30.09.2011, 14:00-15:00
Permitted examination aids:
Bilingual dictionary
BI-approved exam calculator: Texas Instruments BA II Plus ${ }^{\text {TM }}$
Answer sheet for multiple choice examinations
Total number of pages: 2

Correct answers: B-B-C-D-C-A-D-A

Question 1.
We reduce the augmented matrix to echelon form:

$$
\left(\begin{array}{cccc|c}
1 & 2 & 3 & 4 & 0 \\
0 & -1 & 1 & 1 & 3 \\
0 & 1 & -1 & 1 & -4 \\
0 & 1 & 1 & -1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & 2 & 3 & 4 & 0 \\
0 & -1 & 1 & 1 & 3 \\
0 & 0 & 0 & 2 & -1 \\
0 & 0 & 2 & 0 & 5
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & 2 & 3 & 4 & 0 \\
0 & -1 & 1 & 1 & 3 \\
0 & 0 & 2 & 0 & 5 \\
0 & 0 & 0 & 2 & -1
\end{array}\right)
$$

From the pivot positions, we see that the system is consistent with a unique solution, and the correct answer is alternative \mathbf{B}.

Question 2.
We form the matrix A with the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ as columns, and reduce A to an echelon form:

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & -1 & 16 \\
7 & 3 & 32
\end{array}\right) \xrightarrow{ }\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -7 & 7 \\
0 & -11 & 11
\end{array}\right) \xrightarrow{ }\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -7 & 7 \\
0 & 0 & 0
\end{array}\right)
$$

From the pivot positions, we see that $\mathbf{v}_{1}, \mathbf{v}_{2}$ are linearly independent and that \mathbf{v}_{3} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$. We see this since the solutions of the vector equation

$$
x \mathbf{v}_{1}+y \mathbf{v}_{2}+z \mathbf{v}_{3}=\mathbf{0}
$$

is given by $x+2 y+3 z=0$ and $-7 y+7 z=0$ with z as a free variable, or $x=-5 z, y=z, z$ is free. So $z=-1$ gives

$$
5 \mathbf{v}_{1}-1 \mathbf{v}_{2}-1 \mathbf{v}_{3}=\mathbf{0} \quad \Rightarrow \quad \mathbf{v}_{3}=5 \mathbf{v}_{1}-\mathbf{v}_{2}
$$

Hence the correct answer is alternative \mathbf{B}.

Question 3.

We reduce the matrix A to an echelon form:

$$
A=\left(\begin{array}{llll}
1 & 2 & -2 & 1 \\
2 & 1 & -1 & 2 \\
7 & 8 & -8 & h
\end{array}\right) \quad \rightarrow\left(\begin{array}{cccc}
1 & 2 & -2 & 1 \\
0 & -3 & 3 & 0 \\
0 & -6 & 6 & h-7
\end{array}\right) \quad \rightarrow\left(\begin{array}{cccc}
1 & 2 & -2 & 1 \\
0 & -3 & 3 & 0 \\
0 & 0 & 0 & h-7
\end{array}\right)
$$

We see that the rank of A is two if $h=7$ and three if $h \neq 7$, and the correct answer is alternative \mathbf{C}.

Question 4.

The characteristic equation of A is $\lambda^{2}-10 \lambda+21=0$, and therefore the eigenvalues are $\lambda=3$ and $\lambda=7$. The correct answer is alternative \mathbf{D}.

Question 5.

The eigenvalues of A are $\lambda=1$ (with multiplicity two) and $\lambda=2$, since we have

$$
\operatorname{det}(A-\lambda I)=\left(\begin{array}{ccc}
1-\lambda & h & h^{2} \\
0 & 1-\lambda & h+4 \\
0 & 0 & 2-\lambda
\end{array}\right)=(1-\lambda)^{2}(2-\lambda)=0
$$

We compute the eigenvectors of $\lambda=1$, the eigenvalue of multiplicity 2 , by reducing the matrix $A-I$ to the reduced echelon form:

$$
\left(\begin{array}{ccc}
0 & h & h^{2} \\
0 & 0 & h+4 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{ } \quad\left(\begin{array}{lll}
0 & h & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

We see that there is one degree of freedom if $h \neq 0$, and two degrees of freedom if $h=0$. Therefore, A is diagonalizable if and only if $h=0$, and the correct answer is alternative \mathbf{C}.

Question 6.

The symmetric matrix of the quadratic form $Q\left(x_{1}, x_{2}\right)=3 x_{1}^{2}-24 x_{1} x_{2}+48 x_{2}^{2}$ is

$$
A=\left(\begin{array}{cc}
3 & -12 \\
-12 & 48
\end{array}\right)
$$

The principal minors are $\Delta_{1}=3,48$ and $\Delta_{2}=0$. Therefore A is positive semidefinite but not positive definite, and the correct answer is alternative \mathbf{A}.

Question 7.

We compute the Hessian matrix of $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}$: First, we compute the first order partial derivatives

$$
f_{1}^{\prime}=x_{2} x_{3}, f_{2}^{\prime}=x_{1} x_{3}, f_{3}^{\prime}=x_{1} x_{2}
$$

and then we compute the second order partial derivatives and form the Hessian matrix

$$
H(f)=\left(\begin{array}{ccc}
0 & x_{3} & x_{2} \\
x_{3} & 0 & x_{1} \\
x_{2} & x_{1} & 0
\end{array}\right)
$$

The first principal minors are $\Delta_{1}=0,0,0$ and $\Delta_{2}=-x_{3}^{2},-x_{2}^{2},-x_{1}^{2}$. It is not true that $-x_{3}^{2},-x_{2}^{2},-x_{1}^{2} \geq$ 0 for all points $\left(x_{1}, x_{2}, x_{3}\right)$, and therefore f is neither convex nor concave. The correct answer is alternative \mathbf{D}.

Question 8.

The set $S=\left\{(x, y): 3 x^{2}-12 x y+48 y^{2} \leq 12\right\}$ of \mathbb{R}^{2} is shown as the shaded region in the figure. We see that it is closed, since the boundary is the points that satisfy the equation $3 x^{2}-12 x y+48 y^{2} \leq 12$, and these boundary points are included in the set. We also see that the set is bounded and convex. The correct answer is alternative \mathbf{A}.

