BI

| Written examination: | GRA 60353 Mathematics | |
| :--- | :--- | :--- | :--- |
| Examination date: | $06.06 .201209: 00-12: 00$ | Total no. of pages: 1 |
| Permitted examination | A bilingual dictionary and BI-approved calculator TEXAS | |
| support material: | INSTRUMENTS BA II Plus | |

Question 1.

We consider the function f given by $f(x, y, z)=7 x y+5 y^{2}-(z-x)^{4}$.
(a) Find all the stationary points of f.
(b) Is f convex? Is it concave?

Question 2.
Find the general solution $y=y(t)$ of the following differential equations:
(a) $y^{\prime \prime}-7 y^{\prime}+12 y=t-3$
(b) $1-3 y^{2} y^{\prime}=t e^{t}$
(c) $(t / y) \cdot y^{\prime}+\ln y=1$

Question 3.
We consider the matrix A and the vector \mathbf{b} given by

$$
A=\left(\begin{array}{ccc}
5 & -5 & 15 t-35 \\
2 & t-4 & 7 t-16
\end{array}\right), \quad \mathbf{b}=\binom{2 t}{t}
$$

(a) What is the rank of A ? Are the column vectors of A linearly independent for any values of t ?
(b) For which values of t does the linear system $A \mathbf{x}=\mathbf{b}$ have one solution, infinitely many solutions and no solutions?
(c) How many degrees of freedom does the linear system $\left(A^{T} A\right) \mathbf{x}=\mathbf{0}$ have? (It is not necessary to compute $A^{T} A$ to answer this question.)

Question 4.
We consider the optimization problem

$$
\max x^{2} y z \text { subject to } x^{2}+2 y^{2}-2 z^{2} \leq 32
$$

(a) Write down the first order conditions and the complementary slackness conditions for the maximum problem, and find all admissible points that satisfy these conditions.
(b) Does the maximum problem have a solution?

