

Written examination:	GRA 60353	Mathematic	s
Examination date:	06.06.2012	09:00 - 12:00	Total no. of pages: 1
Permitted examination	A bilingual dictionary and BI-approved calculator TEXAS		
support material:	INSTRUMENTS BA II Plus		
Answer sheets:	Squares		
	Counts 80% o	of GRA 6035	The subquestions are weighted equally
Re-sit exam			Responsible department: Economics

QUESTION 1.

We consider the function f given by $f(x, y, z) = 7xy + 5y^2 - (z - x)^4$.

- (a) Find all the stationary points of f.
- (b) Is f convex? Is it concave?

QUESTION 2.

Find the general solution y = y(t) of the following differential equations:

(a) y'' - 7y' + 12y = t - 3(b) $1 - 3y^2y' = te^t$ (c) $(t/y) \cdot y' + \ln y = 1$

QUESTION 3.

We consider the matrix A and the vector **b** given by

$$A = \begin{pmatrix} 5 & -5 & 15t - 35 \\ 2 & t - 4 & 7t - 16 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2t \\ t \end{pmatrix}$$

- (a) What is the rank of A? Are the column vectors of A linearly independent for any values of t?
- (b) For which values of t does the linear system $A\mathbf{x} = \mathbf{b}$ have one solution, infinitely many solutions and no solutions?
- (c) How many degrees of freedom does the linear system $(A^T A)\mathbf{x} = \mathbf{0}$ have? (It is not necessary to compute $A^T A$ to answer this question.)

QUESTION 4.

We consider the optimization problem

$$\max x^2 yz$$
 subject to $x^2 + 2y^2 - 2z^2 \le 32$

- (a) Write down the first order conditions and the complementary slackness conditions for the maximum problem, and find all admissible points that satisfy these conditions.
- (b) Does the maximum problem have a solution?