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Question 1.

(a) We compute the partial derivatives f ′x = 7y + 4(z − x)3, f ′y = 7x+ 10y and f ′z = −4(z − x)3.
The stationary points are given by the equations

7y + 4(z − x)3 = 0, 7x+ 10y = 0, −4(z − x)3 = 0

The last equation gives x = z and the first then gives y = 0. From the second equation, we
get that x = 0, hence z = 0. The stationary points are therefore given by (x,y, z) = (0,0,0).

(b) We compute the second order partial derivatives of f and form the Hessian matrix

f ′′ =


−12(z − x)2 7 12(z − x)2

7 10 0

12(z − x)2 0 −12(z − x)2


We see that the matrix has second leading principal minor D2 = −120(z − x)2 − 49 < 0 and
therefore f is not convex and not concave.

Question 2.

(a) The homogeneous equation y′′ − 7y′ + 12y = 0 has characteristic equation r2 − 7r + 12 = 0,
and therefore roots r = 3, 4. Hence the homogeneous solution is yh(t) = C1e

3t + C2e
4t. To

find a particular solution of y′′ − 7y′ + 12y = t− 3, we try y = At+B. This gives y′ = A and
y′′ = 0, and substitution in the equation gives −7A+12(At+B) = t−3. Hence A = 1/12 and
B = −29/144 is a solution, and yp(t) = 1

12 t −
29
144 is a particular solution. This gives general

solution

y(t) = C1e
3t + C2e

4t +
1

12
t− 29

144

(b) We rewrite the differential equation as 3y2y′ = 1− tet. This differential equation is separable,
and we integrate on both sides to solve it:∫

3y2 dy =

∫
1− tet dt ⇒ y3 = t−

∫
tet dt = t− (tet − et) + C = t− tet + et + C

This gives

y =
3
√
t− tet + et + C



(c) We rewrite the differential equation as (t/y) · y′ + (ln y − 1) = 0, and try to find a function
u = u(y, t) such that u′t = ln y − 1 and u′y = t/y to find out if the equation is exact. We see
that u = t ln y− t is a solution, so the differential equation is exact, with solution t ln y− t = C
or ln y − 1 = C/t. The solution is therefore

ln y =
C
t

+ 1 ⇒ y = eC/t+1

Question 3.

(a) We compute the minor of order two in A consisting of the first two columns:∣∣∣∣∣∣5 −5

2 t− 4

∣∣∣∣∣∣ = 5(t− 4) + 10 = 5t− 10

We see that this minor is non-zero when t 6= 2, hence A has rank two (the maximal rank)
when t 6= 2. When t = 2, we have

A =

5 −5 −5

2 −2 −2


and we see that A has rank one. This means that

rk(A) =

{
2, t 6= 2

1, t = 2

The three column vectors of A are not linearly independent for any values of t since the rank
of A cannot be three.

(b) When t 6= 2, we have that rk(A) = 2, and and the first two columns of A are pivot columns.
This impliest that Ax = b has infinitely many solutions when t 6= 2 (with one degree of
freedom, and we can choose the third variable to be free). When t = 2, we get the linear
system 5 −5 −5

2 −2 −2

 ·

x

y

z

 =

4

2


and we see that this linear system is inconsistent (no solutions). We conclude that the linear
system has infinitely many solutions (one degree of freedom) when t 6= 2, and no solutions
when t = 2.

(c) We claim that (ATA)x = 0 has the same solutions as Ax = 0: If Ax = 0, then clearly
ATAx = AT0 = 0. Conversely, if (ATA)x = 0, then xT (ATA)x = xT0 = 0, and this implies
that (Ax)T (Ax) = 0. But if an n-vector y satisfy yTy = 0, then y21 + · · · + y2n = 0 and
therefore y1 = y2 = · · · = yn = 0; that is y = 0. When we apply this to y = Ax, we see
that Ax = 0. This proves the claim. We conclude that the number of degrees of freedom of
(ATA)x = 0 is the same as the number of degrees of freedom of Ax = 0, which is

3− rkA =

{
1, t 6= 2

2, t = 2

Alternatively, we could solve this problem computing ATA explicitly.

2



Question 4.

(a) The Lagrangian for this problem is given by L = x2yz−λ(x2 + 2y2− 2z2), and the first order
conditions are

L′x = 2xyz − 2xλ = 0

L′y = x2z − 4yλ = 0

L′z = x2y + 4zλ = 0

The complementary slackness conditions are given by λ ≥ 0, and λ = 0 if x2 + 2y2−2z2 < 32.
Let us find all admissible points satisfying these conditions. We solve the first order conditions,
and get x = 0 or λ = yz from the first equation. If x = 0, then yλ = zλ = 0, so either λ = 0
or λ 6= 0⇒ y = z = 0. In the first case, the constraint gives 2y2 − 2z2 ≤ 32⇒ y2 − z2 ≤ 16.
This gives the solution

x = 0, y2 − z2 ≤ 16, λ = 0

In the second case, x = y = z = 0, λ 6= 0. Since the constraint is not binding, this is not a
solution. If x 6= 0, then λ = yz, and the last two first order conditions give

x2z − 4y · yz = 0⇒ z(x2 − 4y2) = 0

x2y + 4z · yz = 0⇒ y(x2 + 4z2) = 0

If z = 0, then x2 + 4z2 6= 0⇒ y = 0 and λ = yz = 0 give a solution

0 < x2 ≤ 32, y = z = 0, λ = 0

If both x 6= 0 and z 6= 0, then x2 − 4y2 = 0 ⇒ y 6= 0, and x2 = 4y2 = −4z2. This is not
possible. Therefore, there are no more solutions.

(b) For any number a, we have that x =
√

32, y = a, z = a is an admissible point for any value of
a, since

x2 + 2y2 − 2z2 = 32 + 2a2 − 2a2 = 32

The value of the function f(x, y, z) = x2yz at this point is f(
√

32, a, a) = 32a2. When a→∞,
we see that f(

√
32, a, a) = 32a2 →∞, and this means that there is no maximum value. Hence

the maximum problem has no solution.
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