BI

| Solutions: | GRA 60353 Mathematics | |
| :--- | :--- | :--- | :--- |
| Examination date: | $06.06 .2012 \quad 09: 00-12: 00$ | Total no. of pages: 3 |
| Permitted examination | A bilingual dictionary and BI-approved calculator TEXAS | |
| support material: | INSTRUMENTS BA II Plus | |

Question 1.

(a) We compute the partial derivatives $f_{x}^{\prime}=7 y+4(z-x)^{3}, f_{y}^{\prime}=7 x+10 y$ and $f_{z}^{\prime}=-4(z-x)^{3}$. The stationary points are given by the equations

$$
7 y+4(z-x)^{3}=0, \quad 7 x+10 y=0, \quad-4(z-x)^{3}=0
$$

The last equation gives $x=z$ and the first then gives $y=0$. From the second equation, we get that $x=0$, hence $z=0$. The stationary points are therefore given by $(\mathbf{x}, \mathbf{y}, \mathbf{z})=(\mathbf{0}, \mathbf{0}, \mathbf{0})$.
(b) We compute the second order partial derivatives of f and form the Hessian matrix

$$
f^{\prime \prime}=\left(\begin{array}{ccc}
-12(z-x)^{2} & 7 & 12(z-x)^{2} \\
7 & 10 & 0 \\
12(z-x)^{2} & 0 & -12(z-x)^{2}
\end{array}\right)
$$

We see that the matrix has second leading principal minor $D_{2}=-120(z-x)^{2}-49<0$ and therefore f is not convex and not concave.

Question 2.

(a) The homogeneous equation $y^{\prime \prime}-7 y^{\prime}+12 y=0$ has characteristic equation $r^{2}-7 r+12=0$, and therefore roots $r=3,4$. Hence the homogeneous solution is $y_{h}(t)=C_{1} e^{3 t}+C_{2} e^{4 t}$. To find a particular solution of $y^{\prime \prime}-7 y^{\prime}+12 y=t-3$, we try $y=A t+B$. This gives $y^{\prime}=A$ and $y^{\prime \prime}=0$, and substitution in the equation gives $-7 A+12(A t+B)=t-3$. Hence $A=1 / 12$ and $B=-29 / 144$ is a solution, and $y_{p}(t)=\frac{1}{12} t-\frac{29}{144}$ is a particular solution. This gives general solution

$$
y(t)=\mathrm{C}_{1} \mathrm{e}^{3 \mathrm{t}}+\mathrm{C}_{2} \mathrm{e}^{4 \mathrm{t}}+\frac{1}{12} \mathrm{t}-\frac{29}{144}
$$

(b) We rewrite the differential equation as $3 y^{2} y^{\prime}=1-t e^{t}$. This differential equation is separable, and we integrate on both sides to solve it:
$\int 3 y^{2} \mathrm{~d} y=\int 1-t e^{t} \mathrm{~d} t \quad \Rightarrow \quad y^{3}=t-\int t e^{t} \mathrm{~d} t=t-\left(t e^{t}-e^{t}\right)+\mathcal{C}=t-t e^{t}+e^{t}+\mathcal{C}$
This gives

$$
y=\sqrt[3]{t-t e^{t}+e^{t}+\mathcal{C}}
$$

(c) We rewrite the differential equation as $(t / y) \cdot y^{\prime}+(\ln y-1)=0$, and try to find a function $u=u(y, t)$ such that $u_{t}^{\prime}=\ln y-1$ and $u_{y}^{\prime}=t / y$ to find out if the equation is exact. We see that $u=t \ln y-t$ is a solution, so the differential equation is exact, with solution $t \ln y-t=\mathcal{C}$ or $\ln y-1=\mathcal{C} / t$. The solution is therefore

$$
\ln y=\frac{\mathcal{C}}{t}+1 \quad \Rightarrow \quad y=\mathbf{e}^{\mathcal{C} / \mathbf{t}+\mathbf{1}}
$$

Question 3.

(a) We compute the minor of order two in A consisting of the first two columns:

$$
\left|\begin{array}{cc}
5 & -5 \\
2 & t-4
\end{array}\right|=5(t-4)+10=5 t-10
$$

We see that this minor is non-zero when $t \neq 2$, hence A has rank two (the maximal rank) when $t \neq 2$. When $t=2$, we have

$$
A=\left(\begin{array}{lll}
5 & -5 & -5 \\
2 & -2 & -2
\end{array}\right)
$$

and we see that A has rank one. This means that

$$
\mathrm{rk}(A)= \begin{cases}2, & t \neq 2 \\ 1, & t=2\end{cases}
$$

The three column vectors of A are not linearly independent for any values of t since the rank of A cannot be three.
(b) When $t \neq 2$, we have that $\operatorname{rk}(A)=2$, and and the first two columns of A are pivot columns. This impliest that $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions when $t \neq 2$ (with one degree of freedom, and we can choose the third variable to be free). When $t=2$, we get the linear system

$$
\left(\begin{array}{lll}
5 & -5 & -5 \\
2 & -2 & -2
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{4}{2}
$$

and we see that this linear system is inconsistent (no solutions). We conclude that the linear system has infinitely many solutions (one degree of freedom) when $t \neq 2$, and no solutions when $t=2$.
(c) We claim that $\left(A^{T} A\right) \mathbf{x}=\mathbf{0}$ has the same solutions as $A \mathbf{x}=\mathbf{0}$: If $A \mathbf{x}=\mathbf{0}$, then clearly $A^{T} A \mathbf{x}=A^{T} \mathbf{0}=\mathbf{0}$. Conversely, if $\left(A^{T} A\right) \mathbf{x}=\mathbf{0}$, then $\mathbf{x}^{T}\left(A^{T} A\right) \mathbf{x}=\mathbf{x}^{T} \mathbf{0}=\mathbf{0}$, and this implies that $(A \mathbf{x})^{T}(A \mathbf{x})=\mathbf{0}$. But if an n-vector \mathbf{y} satisfy $\mathbf{y}^{T} \mathbf{y}=\mathbf{0}$, then $y_{1}^{2}+\cdots+y_{n}^{2}=0$ and therefore $y_{1}=y_{2}=\cdots=y_{n}=0$; that is $\mathbf{y}=\mathbf{0}$. When we apply this to $\mathbf{y}=A \mathbf{x}$, we see that $A \mathbf{x}=\mathbf{0}$. This proves the claim. We conclude that the number of degrees of freedom of $\left(A^{T} A\right) \mathbf{x}=\mathbf{0}$ is the same as the number of degrees of freedom of $A \mathbf{x}=\mathbf{0}$, which is

$$
3-\mathrm{rk} A= \begin{cases}1, & t \neq 2 \\ 2, & t=2\end{cases}
$$

Alternatively, we could solve this problem computing $A^{T} A$ explicitly.

Question 4.

(a) The Lagrangian for this problem is given by $\mathcal{L}=x^{2} y z-\lambda\left(x^{2}+2 y^{2}-2 z^{2}\right)$, and the first order conditions are

$$
\begin{aligned}
\mathcal{L}_{x}^{\prime} & =2 x y z-2 x \lambda=0 \\
\mathcal{L}_{y}^{\prime} & =x^{2} z-4 y \lambda=0 \\
\mathcal{L}_{z}^{\prime} & =x^{2} y+4 z \lambda=0
\end{aligned}
$$

The complementary slackness conditions are given by $\lambda \geq 0$, and $\lambda=0$ if $x^{2}+2 y^{2}-2 z^{2}<32$. Let us find all admissible points satisfying these conditions. We solve the first order conditions, and get $x=0$ or $\lambda=y z$ from the first equation. If $x=0$, then $y \lambda=z \lambda=0$, so either $\lambda=0$ or $\lambda \neq 0 \Rightarrow y=z=0$. In the first case, the constraint gives $2 y^{2}-2 z^{2} \leq 32 \Rightarrow y^{2}-z^{2} \leq 16$. This gives the solution

$$
x=0, y^{2}-z^{2} \leq 16, \lambda=0
$$

In the second case, $x=y=z=0, \lambda \neq 0$. Since the constraint is not binding, this is not a solution. If $x \neq 0$, then $\lambda=y z$, and the last two first order conditions give

$$
\begin{aligned}
& x^{2} z-4 y \cdot y z=0 \Rightarrow z\left(x^{2}-4 y^{2}\right)=0 \\
& x^{2} y+4 z \cdot y z=0 \Rightarrow y\left(x^{2}+4 z^{2}\right)=0
\end{aligned}
$$

If $z=0$, then $x^{2}+4 z^{2} \neq 0 \Rightarrow y=0$ and $\lambda=y z=0$ give a solution

$$
0<x^{2} \leq 32, y=z=0, \lambda=0
$$

If both $x \neq 0$ and $z \neq 0$, then $x^{2}-4 y^{2}=0 \Rightarrow y \neq 0$, and $x^{2}=4 y^{2}=-4 z^{2}$. This is not possible. Therefore, there are no more solutions.
(b) For any number a, we have that $x=\sqrt{32}, y=a, z=a$ is an admissible point for any value of a, since

$$
x^{2}+2 y^{2}-2 z^{2}=32+2 a^{2}-2 a^{2}=32
$$

The value of the function $f(x, y, z)=x^{2} y z$ at this point is $f(\sqrt{32}, a, a)=32 a^{2}$. When $a \rightarrow \infty$, we see that $f(\sqrt{32}, a, a)=32 a^{2} \rightarrow \infty$, and this means that there is no maximum value. Hence the maximum problem has no solution.

