NORWEGIAN

Written examination in: GRA 60353 Mathematics

Examination date:
12.12.2011, 09:00-12:00

Permitted examination aids:
Bilingual dictionary
BI-approved exam calculator: TEXAS INSTRUMENTS BA II Plus ${ }^{\top}{ }^{\top}$
Squares
Total number of pages:
2

Question 1.

We consider the function f given by $f(x, y, z)=x+y+z-\ln (x+2 y+3 z)$ defined on the set $D_{f}=\{(x, y, z): x+2 y+3 z>0\}$.
(a) Find all stationary points of f.
(b) Is f convex? Is it concave?

Question 2.

We consider the matrices A and B, given by

$$
A=\left(\begin{array}{lll}
3 & 4 & 5 \\
0 & 2 & 0 \\
1 & 3 & 7
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & 1 & 5 \\
1 & 3 & 5 \\
1 & 7 & 4
\end{array}\right)
$$

(a) Find all eigenvalues of A, and use them to compute $\operatorname{det}(A)$ and $\operatorname{rk} A$.
(b) Compute all eigenvectors for A. Is A diagonalizable?
(c) Determine if there are any common eigenvectors for A and B. Show that if \mathbf{x} is a common eigenvector for A and B, then \mathbf{x} is also an eigenvector for $A B$.

Question 3.

We consider the differential equation $(x+1) t \dot{x}+(t+1) x=0$ with initial condition $x(1)=1$.
(a) Show that the differential equation is separable, and use this to find an implicit expression for $x=x(t)$. In other words, find an equation of the form

$$
F(x, t)=A
$$

that defines $x=x(t)$ implicitly. It is not necessary to solve this equation for x.
(b) Show that the differential equation becomes exact after multiplication with e^{x+t}. Use this to find an implicit expression for $x=x(t)$. In other words, find an equation of the form

$$
G(x, t)=B
$$

that defines $x=x(t)$ implicitly. It is not necessary to solve this equation for x.

Question 4.

We consider the optimization problem

$$
\min 2 x^{2}+y^{2}+3 z^{2} \text { subject to } \begin{cases}x-y+2 z & =3 \\ x+y & =3\end{cases}
$$

(a) Write down the first order conditions for this optimization problem and show that there is exactly one admissible point that satisfy the first order conditions, the point $(x, y, z)=(2,1,1)$.
(b) Use the bordered Hessian at $(x, y, z)=(2,1,1)$ to show that this point is a local minimum for $2 x^{2}+y^{2}+3 z^{2}$ among the admissible points. What is the local minimum value?
(c) Prove that $(x, y, z)=(2,1,1)$ solves the above optimization problem with equality constraints. What is the solution of the Kuhn-Tucker problem

$$
\min 2 x^{2}+y^{2}+3 z^{2} \text { subject to } \begin{cases}x-y+2 z & \geq 3 \\ x+y & \geq 3\end{cases}
$$

with inequality constraints?

