Question 6 /Mid-term 28.09.09 (lecture notes, pag 210)

Consider the matrix

$$
A=\left(\begin{array}{ccc}
8 & 0 & 0 \\
0 & 8 & -10 \\
0 & 0 & -2
\end{array}\right) .
$$

The matrix has the eigenvectors

$$
u=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), v=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), w=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),
$$

where u and v have the eigenvalue $\lambda=8$ and w has the eigenvalue $\lambda=-2$. Which statement is correct?
A. The matrix A does not have three distinct eigenvalues. Hence it is not diagonalizable.
B. The matrix A does not have three linearly independent eigenvectors, and it is not diagonalizable.
C. The matrix A is diagonalizable.
D. The matrix A is not invertible.
E. I prefer not to answer.

Remember:

1) If A is a $n_{x} n$ matrix with n different eigenvalues, then A is diagonalizable.
!!! (If A is diagonalizable, its eigenvalues are not necessary different)
2) \mathbf{A} is diagonalizable if and only if there are \mathbf{n} linearly independent eigenvectors for A.

Solution:

The vectors u, v and w are linearly independent, since the matrix that has them as column vectors (matrix B) has the determinant 1 (different from 0).
$\operatorname{Det}(B)=\operatorname{det}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)=1$
We found 3 linearly independent eigenvectors, so we can conclude that A is diagonalizable.
Deeply to understand:
we know the eigenvalues and we compute the eigenvectors corresponding to them; ---for $\lambda=8: \mathrm{Ax}=8 \mathrm{x} \rightarrow(\mathrm{A}-8 \mathrm{I}) \mathrm{x}=0 \rightarrow\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -10 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x 1 \\ x 2 \\ x 3\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. We find that x 1 and x 2 are free variables and $\mathrm{x} 3=0$.

Therefore, the eigenvectors corresponding to $\lambda=8$ are: $\mathrm{r}^{*}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+s *\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, where r and s are numbers.

If we take for instance $r=1$ and $s=0$, we obtain $u=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
If we take $r=0$ and $s=1$, we obtain $v=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.

$$
\begin{aligned}
& -- \text { for } \lambda=-2: A x=-2 \mathrm{x} \rightarrow(\mathrm{~A}-(-2) \mathrm{I}) \mathrm{x}=0 \rightarrow\left(\begin{array}{ccc}
10 & 0 & 0 \\
0 & 10 & -10 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x 1 \\
x 2 \\
x 3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text {. We find the } \\
& \text { solution }\left(\begin{array}{l}
x 1 \\
x 2 \\
x 3
\end{array}\right)=S *\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \text {, where } s \text { is a number. }
\end{aligned}
$$

The matrix A does not have three distinct eigenvalues. Even if we found 2 eigenvalues that are equal ($\lambda_{1}=\lambda_{2}=8$), we were able to find 3 linearly independent eigenvectors for matrix A (u, v and w). Hence matrix A is diagonalizable.

