Mock exam in:
Examination date:
Permitted examination aids: Bilingual dictionary.
Bl-approved exam calculator: TEXAS INSTRUMENTS BA II Plus ${ }^{\text {TM }}$
Answer sheets: Answer sheet for multiple choice examinations
Total number of pages: 4
Number of attachments: 1 (example of how to use the answer sheet)

PLEASE READ THE FOLLOWING BEFORE YOU BEGIN!

- Students must themselves assure that the examination papers are complete.
- Students must provide the following information on the answer sheet:
- Examination code
- Personal initials
- ID number

The student registration number must be recorded with both the appropriate numbers and by putting an " X " by the corresponding number in the columns below.

- Pens with green ink and pencils cannot be used in filling in answer sheets. Answer sheets must not be used for writing rough drafts.
- All answers must be recorded with an "X" under the letter you believe corresponds with the correct answer.
- Cancel an "X" by filling in the box completely (boxes that are completely filled in will not be registered). " X " in two boxes for one question will be registered as a wrong answer.
- The attached example shows you how the answer sheet would be filled in if A were the correct answer for question 1, B correct for question 2, C correct for question 3 and D correct for question 4. An "X" under E indicates that you choose not to answer question 5.
- Your answers are to be recorded on the answer sheet. Answers written on the examination papers and not on the answer sheets will not be graded.
- There is only one right answer for each question. Because the questions are weighted equally, it can be to your advantage to answer the simplest questions first.
- Wrong answers are given -1 point, unanswered questions get 0 points (indicated by an "X" next to E") and correct answers are given 3 points.
- You can keep the examination papers.

Good luck!

This exam has 8 questions

Question 1.

Consider the linear system

$$
\left(\begin{array}{ccccc}
3 & -9 & 12 & -9 & 0 \\
0 & 2 & -4 & 4 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-9 \\
-14 \\
4 \\
7
\end{array}\right)
$$

Which statement is true?

(A) The linear system has a unique solution.
(B) The linear system has one degree of freedom
(C) The linear system has two degrees of freedom
(D) The linear system is inconsistent.
(E) I prefer not to answer.

Question 2.

Consider the vector \mathbf{w} and the set of vectors $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where

$$
\mathbf{w}=\left(\begin{array}{c}
-4 \\
3 \\
h
\end{array}\right), \quad \mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{c}
5 \\
-4 \\
-7
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right)
$$

Which statement is true?

(A) \mathbf{w} is a linear combination of the vectors in \mathcal{B} for all values of h
(B) \mathbf{w} is a linear combination of the vectors in \mathcal{B} exactly when $h \neq 5$
(C) \mathbf{w} is a linear combination of the vectors in \mathcal{B} exactly when $h=5$
(D) \mathbf{w} is not a linear combination of the vectors in \mathcal{B} for any value of h
(E) I prefer not to answer.

Question 3.

Compute the rank of the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 2 & -5 & 0 & -1 \\
2 & 5 & -8 & 4 & 3 \\
-3 & -9 & 9 & -7 & -2 \\
3 & 10 & -7 & 11 & 7
\end{array}\right)
$$

Which statement is true?
(A) $\operatorname{rk} A=1$
(B) $\operatorname{rk} A=2$
(C) $\operatorname{rk} A=3$
(D) $\operatorname{rk} A=4$
(E) I prefer not to answer.

Question 4.
Consider the matrix

$$
A=\left(\begin{array}{cc}
7 & -2 \\
2 & 3
\end{array}\right)
$$

Which statement is true?
(A) A has eigenvalues $\lambda=7$ and $\lambda=3$
(B) A has eigenvalues $\lambda=2$ and $\lambda=-2$
(C) A has a single eigenvalue $\lambda=5$
(D) A has eigenvalues $\lambda=5$ and $\lambda=-5$
(E) I prefer not to answer.

Question 5.

Consider the matrix

$$
A=\left(\begin{array}{ccc}
3 & 2 & 0 \\
0 & 3 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Which statement is true?

(A) A is diagonalizable with eigenvalues $\lambda=3$ and $\lambda=-1$
(B) A is diagonalizable with eigenvalues $\lambda=3, \lambda=-3$ and $\lambda=-1$
(C) A is not diagonalizable with eigenvalues $\lambda=3$ and $\lambda=-1$
(D) A is not diagonalizable with eigenvalues $\lambda=3, \lambda=-3$ and $\lambda=-1$
(E) I prefer not to answer.

Question 6.

Consider the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+6 x_{1} x_{2}+3 x_{2}^{2}+2 x_{3}^{2}
$$

Which statement is true?
(A) f is not a quadratic form
(B) f is a positive definite quadratic form
(C) f is an indefinite quadratic form
(D) f is a negative definite quadratic form
(E) I prefer not to answer.

Question 7.

Consider the function

$$
f\left(x_{1}, x_{2}\right)=3-a \cdot Q\left(x_{1}, x_{2}\right)
$$

defined on \mathbb{R}^{2}, where $a \in \mathbb{R}$ is a number and Q is a positive definite quadratic form. Which statement is true?
(A) f is convex for all values of a
(B) f is concave for all values of a
(C) f is convex if $a \geq 0$ and concave if $a \leq 0$
(D) f is convex if $a \leq 0$ and concave if $a \geq 0$
(E) I prefer not to answer.

Question 8.

Consider a linear system $A \mathbf{x}=\mathbf{0}$, where A is a 57×61 matrix. Which statement is true?
(A) The system is inconsistent
(B) The system has a unique solution
(C) The system is consistent, but it is not possible to decide if the system has a unique solution or infinitely many solutions
(D) The system has infinitely many solutions
(E) I prefer not to answer.

