Mock exam in:

Examination date: GRA 60353 Mathematics

Permitted examination aids: Bilingual dictionary
BI-approved exam calculator: TEXAS INSTRUMENTS BA II Plus ${ }^{\text {TM }}$

Answer sheets: Squares
Total number of pages: 1

Question 1.

We consider the matrix A given by

$$
A=\left(\begin{array}{ccc}
1 & 1 & -4 \\
0 & t+2 & t-8 \\
0 & -5 & 5
\end{array}\right)
$$

(a) Compute the determinant and the rank of A.
(b) Find all eigenvalues of A.
(c) Determine the values of t such that A is diagonalizable.

Question 2.

(a) Find all stationary points of $f(x, y, z)=e^{x y+y z-x z}$.
(b) Determine the values of the parameters a, b, c such that the function $g(x, y, z)=e^{a x+b y+c z}$ is convex. Is it concave for any values of a, b, c ?

Question 3.

(a) Find the solution of the differential equation $y^{\prime}=y(1-y)$ that satisfies $y(0)=1 / 2$.
(b) Find the general solution of the differential equation

$$
\left(\ln \left(t^{2}+1\right)-2\right) y^{\prime}=2 t-\frac{2 t y}{t^{2}+1}
$$

(c) Solve the difference equation

$$
p_{t+2}=\frac{2}{3} p_{t+1}+\frac{1}{3} p_{t}, \quad p_{0}=100, \quad p_{1}=102
$$

Question 4.

We consider the following optimization problem: Maximize $f(x, y, z)=x y+y z-x z$ subject to the constraint $x^{2}+y^{2}+z^{2} \leq 1$.
(a) Write down the first order conditions for this problem, and solve the first order conditions for x, y, z using matrix methods.
(b) Solve the optimization problem. Make sure that you check the non-degenerate constraint qualification, and also make sure that you show that the problem has a solution.

