Department of Economics

Solutions:
GRA 60352 Mathematics
Examination date: $\quad 24.05 .2011,09: 00-10: 00$
Permitted examination aids: Bilingual dictionary.
Bl-approved exam calculator: TEXAS INSTRUMENTS BA II Plus ${ }^{\text {TM }}$
Answer sheets: Answer sheet for multiple choice examinations
Total number of pages: 2

Correct answers: A-D-B-D-A-C-C-B

Question 1.

Since the augmented matrix of the system is in echelon form, we see that the system is inconsistent. Hence the correct answer is alternative A.

Question 2.

We compute the determinant

$$
\left|\begin{array}{ccc}
2 & 1 & h+1 \\
3 & 2 & h \\
-1 & 1 & h-2
\end{array}\right|=3 h+3
$$

Hence the vectors are linearly independent exactly when $h \neq-1$, and the correct answer is alternative D. This question can also be answered using Gauss elimination.

Question 3.

We compute an echelon form of A using elementary row operations, and get

$$
A=\left(\begin{array}{cccc}
2 & 10 & 6 & 8 \\
1 & 5 & 4 & 11 \\
3 & 15 & 7 & -2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 5 & 4 & 11 \\
0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Hence A has rank 2, and the correct answer is alternative B. This question can also be answered using minors.

Question 4.

The characteristic equation of A is $\lambda^{2}-9 \lambda+20=0$. Hence the eigenvalues of A is $\lambda=4, \lambda=5$, and the correct answer is alternative D.

Question 5.

In order for \mathbf{v} to be an eigenvector, we must have $A \mathbf{v}=\lambda \mathbf{v}$, or $2+b=\lambda \cdot 1$ and $-1+3 b=\lambda b$. This gives $\lambda=b+2$ and $b^{2}-b+1=0$, and there is no solution for b. Hence the correct answer is alternative A.

Question 6.

The symmetric matrix associated with Q is $A=\left(\begin{array}{rr}-2 & 6 \\ 6 & 2\end{array}\right)$, and we compute its eigenvalues to be $\pm \sqrt{40}$. Hence the correct answer is alternative C.

Question 7.

The function f is a sum of a linear function and a quadratic form with symmetric matrix

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -3 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Since A has eigenvalues $\lambda=-2 \pm \sqrt{2}$ and $\lambda=-1$, the quadratic form is negative definite and therefore concave (but not convex). Hence the correct answer is alternative C.

Question 8.

We compute $A^{2}=I$ directly, and use this to show that $A^{7}=\left(A^{2}\right)^{3} \cdot A=A$. The correct answer is therefore alternative B. Alternatively, we may compute that $\lambda= \pm 1$ are eigenvalues of A and find corresponding eigenvectors $\mathbf{v}_{1}=\binom{1}{0}$ and $\mathbf{v}_{2}=\binom{-1}{1}$. This gives $D=P^{-1} A P$ with

$$
D=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad P=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right), \quad P^{-1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and therefore $A^{7}=\left(P D P^{-1}\right)^{7}=P D^{7} P^{-1}=P D P^{-1}=A=\left(\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right)$.

