Department of Economics

Multiple-choice examination in: GRA 60352 Mathematics

Examination date:

Permitted examination aids:

Answer sheets:

Total number of pages:
Number of attachments:
24.09.2010, 14:00-15:00

Bilingual dictionary.
Bl-approved exam calculator: TEXAS INSTRUMENTS BA II Plus ${ }^{\text {TM }}$
Answer sheet for multiple choice examinations

4

1 (example of how to use the answer sheet)

PLEASE READ THE FOLLOWING BEFORE YOU BEGIN!

- Students must themselves assure that the examination papers are complete.
- Students must provide the following information on the answer sheet:
- Examination code
- Personal initials
- ID number

The student registration number must be recorded with both the appropriate numbers and by putting an " X " by the corresponding number in the columns below.

- Pens with green ink and pencils cannot be used in filling in answer sheets. Answer sheets must not be used for writing rough drafts.
- All answers must be recorded with an "X" under the letter you believe corresponds with the correct answer.
- Cancel an "X" by filling in the box completely (boxes that are completely filled in will not be registered). " X " in two boxes for one question will be registered as a wrong answer.
- The attached example shows you how the answer sheet would be filled in if A were the correct answer for question 1, B correct for question 2 , C correct for question 3 and D correct for question 4. An "X" under E indicates that you choose not to answer question 5.
- Your answers are to be recorded on the answer sheet. Answers written on the examination papers and not on the answer sheets will not be graded.
- There is only one right answer for each question. Because the questions are weighted equally, it can be to your advantage to answer the simplest questions first.
- Wrong answers are given -1 point, unanswered questions get 0 points (indicated by an "X" next to E ") and correct answers are given 3 points.
- You can keep the examination papers.

Good luck!

This exam has 8 questions

Question 1.
Consider the linear system

$$
\left(\begin{array}{ccccc}
1 & -3 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & -4 \\
0 & 0 & 0 & 1 & 9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
4 \\
0
\end{array}\right)
$$

Which statement is true?
(A) The linear system is inconsistent.
(B) The linear system has a unique solution.
(C) The linear system has one degree of freedom
(D) The linear system has two degrees of freedom
(E) I prefer not to answer.

Question 2.

Consider the set of vectors $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
0 \\
1 \\
h
\end{array}\right)
$$

and h is a parameter. Which statement is true?
(A) \mathcal{B} is a linearly independent set of vectors for all h
(B) \mathcal{B} is a linearly independent set of vectors exactly when $h=3$
(C) \mathcal{B} is a linearly independent set of vectors exactly when $h \neq 1 / 7$
(D) \mathcal{B} is a linearly independent set of vectors exactly when $h \neq 3$
(E) I prefer not to answer.

Question 3.

Compute the rank of the matrix

$$
A=\left(\begin{array}{lllll}
2 & 5 & -3 & -4 & 8 \\
4 & 7 & -4 & -3 & 9 \\
6 & 9 & -5 & -2 & 4
\end{array}\right)
$$

Which statement is true?

(A) $\operatorname{rk} A=1$
(B) $\operatorname{rk} A=2$
(C) $\operatorname{rk} A=3$
(D) $\operatorname{rk} A=4$
(E) I prefer not to answer.

Question 4.

Consider the matrix

$$
A=\left(\begin{array}{cc}
1 & 2 \\
4 & -1
\end{array}\right)
$$

Which statement is true?

(A) A has eigenvalues $\lambda=1$ and $\lambda=-1$
(B) A has eigenvalues $\lambda=2$ and $\lambda=4$
(C) A has a single eigenvalue $\lambda=3$
(D) A has eigenvalues $\lambda=3$ and $\lambda=-3$
(E) I prefer not to answer.

Question 5.

Consider the matrix

$$
A=\left(\begin{array}{cc}
5 & 4 \\
-1 & 9
\end{array}\right)
$$

Which statement is true?

(A) $\lambda=7$ is not an eigenvalue for A
(B) $\lambda=7$ is an eigenvalue for A and A is diagonalizable
(C) $\lambda=7$ is an eigenvalue for A but A is not diagonalizable
(D) $\lambda=7$ and $\lambda=3$ are eigenvalues for A
(E) I prefer not to answer.

Question 6.

Consider the quadratic form

$$
Q\left(x_{1}, x_{2}\right)=x_{1}^{2}-4 x_{1} x_{2}+4 x_{2}^{2}
$$

Which statement is true?

(A) Q is positive semidefinite but not positive definite
(B) Q is negative semidefinite but not negative definite
(C) Q is indefinite
(D) Q is positive definite
(E) I prefer not to answer.

Question 7.

Consider the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}+x_{3}^{2}+x_{1}-x_{2}
$$

defined on \mathbb{R}^{3}. Which statement is true?
(A) f is a convex function but not a concave function
(B) f is a convex function and a concave function
(C) f is not a convex function but a concave function
(D) f is neither a convex nor a concave function
(E) I prefer not to answer.

Question 8.

A car rental agency has two rental locations in a certain city, one downtown and one at the airport. Let x_{t} denote the number of cars at the downtown location after t days, and y_{t} the number of cars at the airport after t days. We assume that the distribution of cars is given by the following model:

$$
\binom{x_{t+1}}{y_{t+1}}=A \cdot\binom{x_{t}}{y_{t}}, \quad \text { where } A=\left(\begin{array}{cc}
0.97 & 0.02 \\
0.03 & 0.98
\end{array}\right)
$$

A steady state for this system is a state $\mathbf{v}=\binom{x}{y}$ such that $A \mathbf{v}=\mathbf{v}$. Which statement is true?
(A) The system has a steady state with 30% of the cars at the downtown location
(B) The system has a steady state with 40% of the cars at the downtown location
(C) The system has a steady state with 50% of the cars at the downtown location
(D) The system has a steady state with 60% of the cars at the downtown location
(E) I prefer not to answer.

