Solutions:	GRA 60352 Mathematics
Examination date:	$24.09 .2010,14: 00-15: 00$
Permitted examination aids:	Bilingual dictionary.
	BI-approved exam calculator: TEXAS INSTRUMENTS BA II Plus ${ }^{\text {TM }}$
Answer sheets:	Answer sheet for multiple choice examinations
Total number of pages:	4
Number of attachments:	1 (example of how to use the answer sheet)

PLEASE READ THE FOLLOWING BEFORE YOU BEGIN!

- Students must themselves assure that the examination papers are complete.
- Students must provide the following information on the answer sheet:
- Examination code
- Personal initials
- ID number

The student registration number must be recorded with both the appropriate numbers and by putting an " X " by the corresponding number in the columns below.

- Pens with green ink and pencils cannot be used in filling in answer sheets. Answer sheets must not be used for writing rough drafts.
- All answers must be recorded with an "X" under the letter you believe corresponds with the correct answer.
- Cancel an "X" by filling in the box completely (boxes that are completely filled in will not be registered). " X " in two boxes for one question will be registered as a wrong answer.
- The attached example shows you how the answer sheet would be filled in if A were the correct answer for question 1, B correct for question 2, C correct for question 3 and D correct for question 4. An "X" under E indicates that you choose not to answer question 5.
- Your answers are to be recorded on the answer sheet. Answers written on the examination papers and not on the answer sheets will not be graded.
- There is only one right answer for each question. Because the questions are weighted equally, it can be to your advantage to answer the simplest questions first.
- Wrong answers are given -1 point, unanswered questions get 0 points (indicated by an "X" next to E") and correct answers are given 3 points.
- You can keep the examination papers.

Good luck!

Correct answers: D-D-C-D-C-A-A-B

Question 1.

Since the augmented matrix of the system is in reduced echelon form, we see that the system is consistent and has two free variables, x_{3} and x_{5}. Hence the correct answer is alternative D. This question can also be answered using minors.

Question 2.

We compute the determinant

$$
\left|\begin{array}{ccc}
2 & 1 & 0 \\
3 & 2 & 1 \\
-1 & 1 & h
\end{array}\right|=h-3
$$

Hence the vectors are linearly independent exactly when $h \neq 3$, and the correct answer is alternative D. This question can also be answered using Gauss elimination.

Question 3.

We compute an echelon form of A using elementary row operations, and get

$$
A=\left(\begin{array}{lllll}
2 & 5 & -3 & -4 & 8 \\
4 & 7 & -4 & -3 & 9 \\
6 & 9 & -5 & -2 & 4
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
2 & 5 & -3 & -4 & 8 \\
0 & -3 & 2 & 5 & 7 \\
0 & 0 & 0 & 0 & -6
\end{array}\right)
$$

Hence A has rank 3 , and the correct answer is alternative C. This question can also be answered using minors. For instance, the minor of order 3 obtained by deleting column 3 and 4 is non-zero.

Question 4.

The characteristic equation of A is $\lambda^{2}-9=0$. Hence the eigenvalues of A is $\lambda= \pm 3$, and the correct answer is alternative D.

Question 5.

We solve the linear system $(A-7 I) \mathbf{v}=\mathbf{0}$, and see that the system has one degree of freedom. Hence $\lambda=7$ is an eigenvalue. This is the only eigenvalue of A, since the characteristic equation of A is $\lambda^{2}-14 \lambda+49=0$ and has 7 as a double root. Hence the correct answer is alternative C.

Question 6.

The symmetric matrix associated with Q is $A=\left(\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right)$, and we compute its eigenvalues to be 0 and 5 . Hence the correct answer is alternative A. This question can also be answered using the fact that $Q\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2}\right)^{2}$.

Question 7.

The function f is a sum of a linear function and a quadratic form with symmetric matrix

$$
A=\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Since A has eigenvalues $\lambda=1,2,4$, the quadratic form is positive definite and therefore convex (but not concave). Hence the correct answer is alternative A.

Question 8.

We solve the equation $A \mathbf{v}=\mathbf{v}$, which can be written as a linear system

$$
\left(\begin{array}{cc}
0.97-1 & 0.02 \\
0.03 & 0.98-1
\end{array}\right) \cdot\binom{x}{y}=\left(\begin{array}{cc}
-0.03 & 0.02 \\
0.03 & -0.02
\end{array}\right) \cdot\binom{x}{y}=\binom{0}{0}
$$

This system has one free variable, and the solutions can be written as $x=2 t, y=3 t$, with $x+y=5 t$. Hence there is a steady state with

$$
\frac{x}{x+y}=\frac{2 t}{5 t}=0.4=40 \%
$$

of the cars at the downtown location. The correct answer is therefore alternative B.

