Lecture 7

Envelope Theorems, Bordered Hessians and Kuhn-Tucker Conditions

Eivind Eriksen

BI Norwegian School of Management
Department of Economics
October 15, 2010

Envelope theorems

In economic optimization problems, the objective functions that we try to maximize/minimize often depend on parameters, like prices. We want to find out how the optimal value is affected by changes in the parameters.

Example

Let $f(x ; a)=-x^{2}+2 a x+4 a^{2}$ be a function in one variable x that depends on a parameter a. For a given value of a, the stationary points of f is given by

$$
\frac{\partial f}{\partial x}=-2 x+2 a=0 \quad \Leftrightarrow \quad x=a
$$

and this is a (local and global) maximum point since $f(x ; a)$ is concave considered as a function in x. We write $x^{*}(a)=$ a for the maximum point. The optimal value function $f^{*}(a)=f\left(x^{*}(a) ; a\right)=-a^{2}+2 a^{2}+4 a^{2}=5 a^{2}$ gives the corresponding maximum value.

Envelope theorems: An example

Example (Continued)

The derivative of the value function is given by

$$
\frac{\partial f^{*}}{\partial a}=\frac{\partial}{\partial a} f\left(x^{*}(a) ; a\right)=\frac{\partial}{\partial a}\left(5 a^{2}\right)=10 a
$$

On the other hand, we see that $f(x ; a)=-x^{2}+2 a x+4 a^{2}$ gives

$$
\frac{\partial f}{\partial a}=2 x+8 a \quad \Rightarrow \quad\left(\frac{\partial f}{\partial a}\right)_{x=x^{*}(a)}=2 a+8 a=10 a
$$

since $x^{*}(a)=a$.
The fact that these computations give the same result is not a coincidence, but a consequence of the envelope theorem for unconstrained optimization problems:

Envelope theorem for unconstrained maxima

Theorem

Let $f(\mathbf{x} ; a)$ be a function in n variables x_{1}, \ldots, x_{n} that depends on a parameter a. For each value of a, let $\mathbf{x}^{*}(a)$ be a maximum or minimum point for $f(\mathbf{x} ; a)$. Then

$$
\frac{\partial}{\partial a} f\left(\mathbf{x}^{*}(a) ; a\right)=\left(\frac{\partial f}{\partial a}\right)_{x=x^{*}(a)}
$$

The following example is a modification of Problem 3.1.2 in [FMEA]:

Example

A firm produces goods A and B. The price of A is 13 , and the price of B is p. The profit function is $\pi(x, y)=13 x+p y-C(x, y)$, where

$$
C(x, y)=0.04 x^{2}-0.01 x y+0.01 y^{2}+4 x+2 y+500
$$

Determine the optimal value function $\pi^{*}(p)$. Verify the envelope theorem.

Envelope theorems: Another example

Solution

The profit function is $\pi(x, y)=13 x+p y-C(x, y)$, hence we compute

$$
\pi(x, y)=-0.04 x^{2}+0.01 x y-0.01 y^{2}+9 x+(p-2) y-500
$$

The first order conditions are

$$
\begin{aligned}
\pi_{x}=-0.08 x+0.01 y+9 & =0 \Rightarrow 8 x-y=900 \\
\pi_{y}=0.01 x-0.02 y+p-2 & =0 \Rightarrow x-2 y=200-100 p
\end{aligned}
$$

This is a linear system with unique solution $x^{*}=\frac{1}{15}(1600+100 p)$ and $y^{*}=\frac{1}{15}(-700+800 p)$. The Hessian $\pi^{\prime \prime}=\left(\begin{array}{cc}-0.08 & 0.01 \\ 0.01 & -0.02\end{array}\right)$ is negative definite since $D_{1}=-0.08<0$ and $D_{2}=0.0015>0$. We conclude that $\left(x^{*}, y^{*}\right)$ is a (local and global) maximum for π.

Envelope theorems: Another example

Solution (Continued)

Hence the optimal value function $\pi^{*}(p)=\pi\left(x^{*}, y^{*}\right)$ is given by

$$
\pi\left(\frac{1}{15}(1600+100 p), \frac{1}{15}(-700+800 p)\right)=\frac{80 p^{2}-140 p+80}{3}
$$

and its derivative is therefore

$$
\frac{\partial}{\partial p} \pi\left(x^{*}, y^{*}\right)=\frac{160 p-140}{3}
$$

On the other hand, the envelope theorem says that we can compute the derivative of the optimal value function as

$$
\left(\frac{\partial \pi}{\partial p}\right)_{(x, y)=\left(x^{*}, y^{*}\right)}=y^{*}=\frac{1}{15}(-700+800 p)=\frac{-140+160 p}{3}
$$

Envelope theorem for constrained maxima

Theorem

Let $f(\mathbf{x} ; a), g_{1}(\mathbf{x} ; a), \ldots, g_{m}(\mathbf{x} ; a)$ be functions in n variables x_{1}, \ldots, x_{n} that depend on the parameter a. For a fixed value of a, consider the following Lagrange problem: Maximize/minimize $f(\mathbf{x} ; a)$ subject to the constraints $g_{1}(\mathbf{x} ; a)=\cdots=g_{m}(\mathbf{x} ; a)=0$. Let $\mathbf{x}^{*}(a)$ be a solution to the Lagrange problem, and let $\lambda^{*}(a)=\lambda_{1}^{*}(a), \ldots, \lambda_{m}^{*}(a)$ be the corresponding Lagrange multipliers. If the NDCQ condition holds, then we have

$$
\frac{\partial}{\partial a} f\left(\mathbf{x}^{*}(a) ; a\right)=\left(\frac{\partial \mathcal{L}}{\partial a}\right)_{\mathbf{x}=\mathbf{x}^{*}(a), \lambda=\lambda^{*}(a)}
$$

Notice that any equality constraint can be re-written in the form used in the theorem, since

$$
g_{j}(\mathbf{x} ; a)=b_{j} \Leftrightarrow g_{j}(\mathbf{x} ; a)-b_{j}=0
$$

Interpretation of Lagrange multipliers

In a Lagrange problem, the Lagrange function has the form

$$
\mathcal{L}(\mathbf{x}, \lambda)=f(\mathbf{x})-\lambda_{1}\left(g_{1}(\mathbf{x})-b_{1}\right)-\ldots \lambda_{m}\left(g_{m}(\mathbf{x})-b_{m}\right)
$$

Hence we see that the partial derivative with respect to the parameter $a=b_{j}$ is given by

$$
\frac{\partial \mathcal{L}}{\partial b_{j}}=\lambda_{j}
$$

By the envelope theorem for constrained maxima, this gives that

$$
\frac{\partial f\left(\mathbf{x}^{*}\right)}{\partial b_{j}}=\lambda_{j}^{*}
$$

where \mathbf{x}^{*} is the solution to the Lagrange problem, $\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}$ are the corresponding Lagrange multipliers, and $f\left(\mathbf{x}^{*}\right)$ is the optimal value function.

Envelope theorems: A constrained example

Example

Consider the following Lagrange problem: Maximize $f(x, y)=x+3 y$ subject to $g(x, y)=x^{2}+a y^{2}=10$. When $a=1$, we found earlier that $\mathbf{x}^{*}(1)=(1,3)$ is a solution, with Lagrange multiplier $\lambda^{*}(1)=1 / 2$ and maximum value $f^{*}(1)=f\left(\mathbf{x}^{*}(1)\right)=f(1,3)=10$. Use the envelope theorem to estimate the maximum value $f^{*}(1.01)$ when $a=1.01$, and check this by computing the optimal value function $f^{*}(a)$.

Solution

The NDCQ condition is satisfied when $a \neq 0$, and the Lagrangian is given by

$$
\mathcal{L}=x+3 y-\lambda\left(x^{2}+a y^{2}-10\right)
$$

Envelope theorems: A constrained example

Solution (Continued)

By the envelope theorem, we have that

$$
\left(\frac{\partial f^{*}(a)}{\partial a}\right)_{a=1}=\left(-\lambda y^{2}\right)_{\mathbf{x}=(1,3), \lambda=1 / 2}=-\frac{9}{2}
$$

An estimate for $f^{*}(1.01)$ is therefore given by

$$
f^{*}(1.01) \simeq f^{*}(1)+0.01 \cdot\left(\frac{\partial f^{*}(a)}{\partial a}\right)_{a=1}=10-0.045=9.955
$$

To find an exact expression for $f^{*}(a)$, we solve the first order conditions:

$$
\begin{array}{r}
\frac{\partial \mathcal{L}}{\partial x}=1-\lambda \cdot 2 x=0 \Rightarrow x=\frac{1}{2 \lambda} \\
\frac{\partial \mathcal{L}}{\partial y}=3-\lambda \cdot 2 a y=0 \Rightarrow y=\frac{3}{2 a \lambda}
\end{array}
$$

Envelope theorems: A constrained example

Solution (Continued)

We substitute these values into the constraint $x^{2}+a y^{2}=10$, and get

$$
\left(\frac{1}{2 \lambda}\right)^{2}+a\left(\frac{3}{2 a \lambda}\right)^{2}=10 \quad \Leftrightarrow \quad \frac{a+9}{4 a \lambda^{2}}=10
$$

This gives $\lambda= \pm \sqrt{\frac{a+9}{40 a}}$ when $a>0$ or $a<-9$. Substitution gives solutions for $x^{*}(a), y^{*}(a)$ and $f^{*}(a)$ (see Lecture Notes for details). For $a=1.01$, this gives $x^{*}(1.01) \simeq 1.0045, y^{*}(1.01) \simeq 2.9836$ and $f^{*}(1.01) \simeq 9.9553$.

Bordered Hessians

The bordered Hessian is a second-order condition for local maxima and minima in Lagrange problems. We consider the simplest case, where the objective function $f(\mathbf{x})$ is a function in two variables and there is one constraint of the form $g(\mathbf{x})=b$. In this case, the bordered Hessian is the determinant

$$
B=\left|\begin{array}{ccc}
0 & g_{1}^{\prime} & g_{2}^{\prime} \\
g_{1}^{\prime} & \mathcal{L}_{11}^{\prime \prime} & \mathcal{L}_{12}^{\prime \prime} \\
g_{2}^{\prime} & \mathcal{L}_{21}^{\prime \prime} & \mathcal{L}_{22}^{\prime \prime}
\end{array}\right|
$$

Example

Find the bordered Hessian for the following local Lagrange problem: Find local maxima/minima for $f\left(x_{1}, x_{2}\right)=x_{1}+3 x_{2}$ subject to the constraint $g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}=10$.

Bordered Hessians: An example

Solution

The Lagrangian is $\mathcal{L}=x_{1}+3 x_{2}-\lambda\left(x_{1}^{2}+x_{2}^{2}-10\right)$. We compute the bordered Hessian

$$
B=\left|\begin{array}{ccc}
0 & 2 x_{1} & 2 x_{2} \\
2 x_{1} & -2 \lambda & 0 \\
2 x_{2} & 0 & -2 \lambda
\end{array}\right|=-2 x_{1}\left(-4 x_{1} \lambda\right)+2 x_{2}\left(4 x_{2} \lambda\right)=8 \lambda\left(x_{1}^{2}+x_{2}^{2}\right)
$$

and since $x_{1}^{2}+x_{2}^{2}=10$ by the constraint, we get $B=80 \lambda$. We solved the first order conditions and the constraint earlier, and found the two solutions $\left(x_{1}, x_{2}, \lambda\right)=(1,3,1 / 2)$ and $\left(x_{1}, x_{2}, \lambda\right)=(-1,-3,-1 / 2)$. So the bordered Hessian is $B=40$ in $\mathbf{x}=(1,3)$, and $B=-40$ in $\mathbf{x}=(-1,-3)$. Using the following theorem, we see that $(1,3)$ is a local maximum and that $(-1,-3)$ is a local minimum for $f\left(x_{1}, x_{2}\right)$ subject to $x_{1}^{2}+x_{2}^{2}=10$.

Bordered Hessian Theorem

Theorem

Consider the following local Lagrange problem: Find local maxima/minima for $f\left(x_{1}, x_{2}\right)$ subject to $g\left(x_{1}, x_{2}\right)=b$. Assume that $\mathbf{x}^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)$ satisfy the constraint $g\left(x_{1}^{*}, x_{2}^{*}\right)=b$ and that $\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)$ satisfy the first order conditions for some Lagrange multiplier λ^{*}. Then we have:
(1) If the bordered Hessian $B\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)<0$, then $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a local minima for $f(\mathbf{x})$ subject to $g(\mathbf{x})=b$.
(2) If the bordered Hessian $B\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)>0$, then $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a local maxima for $f(\mathbf{x})$ subject to $g(\mathbf{x})=b$.

Optimization problems with inequality constraints

We consider the following optimization problem with inequality constraints:
Optimization problem with inequality constraints
Maximize/minimize $f(\mathbf{x})$ subject to the inequality constraints $g_{1}(\mathbf{x}) \leq b_{1}$, $g_{2}(\mathbf{x}) \leq b_{2}, \ldots, g_{m}(\mathbf{x}) \leq b_{m}$.

In this problem, f and g_{1}, \ldots, g_{m} are function in n variables $x_{1}, x_{2}, \ldots, x_{n}$ and $b_{1}, b_{2}, \ldots, b_{m}$ are constants.

Example (Problem 8.9)

Maximize the function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}+x_{2}-1$ subject to $g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2} \leq 1$.

To solve this constrained optimization problem with inequality constraints, we must use a variation of the Lagrange method.

Optimization problems with inequality constraints

Kuhn-Tucker conditions

Definition

Just as in the case of equality constraints, the Lagrangian is given by

$$
\mathcal{L}(\mathbf{x}, \lambda)=f(\mathbf{x})-\lambda_{1}\left(g_{1}(\mathbf{x})-b_{1}\right)-\lambda_{2}\left(g_{2}(\mathbf{x})-b_{2}\right)-\cdots-\lambda_{m}\left(g_{m}(\mathbf{x})-b_{m}\right)
$$

In the case of inequality constraints, we solve the Kuhn-Tucker conditions in additions to the inequalities $g_{1}(\mathbf{x}) \leq b_{1}, \ldots, g_{m}(\mathbf{x}) \leq b_{m}$. The Kuhn-Tucker conditions for maximum consist of the first order conditions

$$
\frac{\partial \mathcal{L}}{\partial x_{1}}=0, \quad \frac{\partial \mathcal{L}}{\partial x_{2}}=0, \quad \frac{\partial \mathcal{L}}{\partial x_{3}}=0, \quad \ldots, \quad \frac{\partial \mathcal{L}}{\partial x_{n}}=0
$$

and the complementary slackness conditions given by

$$
\lambda_{j} \geq 0 \text { for } j=1,2, \ldots, m \text { and } \lambda_{j}=0 \text { whenever } g_{j}(\mathbf{x})<b_{j}
$$

When we solve the Kuhn-Tucker conditions together with the inequality constraints $g_{1}(\mathbf{x}) \leq b_{1}, \ldots, g_{m}(\mathbf{x}) \leq b_{m}$, we obtain candidates for maximum.

Necessary condition

Theorem

Assume that $\mathbf{x}^{*}=\left(x_{1}^{*}, \ldots, x_{N}^{*}\right)$ solves the optimization problem with inequality constraints. If the NDCQ condition holds at \mathbf{x}^{*}, then there are unique Lagrange multipliers $\lambda_{1}, \ldots, \lambda_{m}$ such that $\left(x_{1}^{*}, \ldots, x_{n}^{*}, \lambda_{1}, \ldots, \lambda_{m}\right)$ satisfy the Kuhn-Tucker conditions.

Given a point \mathbf{x}^{*} satisfying the constraints, the NDCQ condition holds if the rows in the matrix

$$
\left(\begin{array}{cccc}
\frac{\partial g_{1}}{\partial x_{1}}\left(\mathbf{x}^{*}\right) & \frac{\partial g_{1}}{\partial x_{2}}\left(\mathbf{x}^{*}\right) & \ldots & \frac{\partial g_{1}}{\partial x_{n}}\left(\mathbf{x}^{*}\right) \\
\frac{\partial g_{2}}{\partial x_{1}}\left(\mathbf{x}^{*}\right) & \frac{\partial g_{2}}{\partial x_{2}}\left(\mathbf{x}^{*}\right) & \ldots & \frac{\partial g_{2}}{\partial x_{n}}\left(\mathbf{x}^{*}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial g_{m}}{\partial x_{1}}\left(\mathbf{x}^{*}\right) & \frac{\partial g_{m}}{\partial x_{2}}\left(\mathbf{x}^{*}\right) & \ldots & \frac{\partial g_{m}}{\partial x_{n}}\left(\mathbf{x}^{*}\right)
\end{array}\right)
$$

corresponding to constraints where $g_{j}\left(\mathbf{x}^{*}\right)=b_{j}$ are linearly independent.

Optimization problems with inequality constraints

Kuhn-Tucker conditions: An example

Solution (Problem 8.9)

The Lagrangian is $\mathcal{L}=x_{1}^{2}+x_{2}^{2}+x_{2}-1-\lambda\left(x_{1}^{2}+x_{2}^{2}-1\right)$, so the first order conditions are

$$
\begin{aligned}
2 x_{1}-\lambda\left(2 x_{1}\right) & =0 \Rightarrow 2 x_{1}(1-\lambda)=0 \\
2 x_{2}+1-\lambda\left(2 x_{2}\right) & =0 \Rightarrow 2 x_{2}(1-\lambda)=-1
\end{aligned}
$$

From the first equation, we get $x_{1}=0$ or $\lambda=1$. But $\lambda=1$ is not possible by the second equation, so $x_{1}=0$. The second equation gives $x_{2}=\frac{-1}{2(1-\lambda)}$ since $\lambda \neq 1$. The complementary slackness conditions are $\lambda \geq 0$ and $\lambda=0$ if $x_{1}^{2}+x_{2}^{2}<1$. We get two cases to consider. Case 1: $x_{1}^{2}+x_{2}^{2}<1, \lambda=0$. In this case, $x_{2}=-1 / 2$ by the equation above, and this satisfy the inequality. So the point $\left(x_{1}, x_{2}, \lambda\right)=(0,-1 / 2,0)$ is a candidate for maximality. Case 2: $x_{1}^{2}+x_{2}^{2}=1, \lambda \geq 0$. Since $x_{1}=0$, we get $x_{2}= \pm 1$.

Kuhn-Tucker conditions: An example

Solution (Problem 8.9 Continued)

We solve for λ in each case, and check that $\lambda \geq 0$. We get two candidates for maximality, $\left(x_{1}, x_{2}, \lambda\right)=(0,1,3 / 2)$ and $\left(x_{1}, x_{2}, \lambda\right)=(0,-1,1 / 2)$. We compute the values, and get

$$
\begin{aligned}
f(0,-1 / 2) & =-1.25 \\
f(0,1) & =1 \\
f(0,-1) & =-1
\end{aligned}
$$

We must check that the NDCQ condition holds. The matrix is $\left(\begin{array}{ll}2 x_{1} & 2 x_{2}\end{array}\right)$. If $x_{1}^{2}+x_{2}^{2}<1$, the NDCQ condition is empty. If $x_{1}^{2}+x_{2}^{2}=1$, the NDCQ condition is that ($2 x_{1} \quad 2 x_{2}$) has rank one, and this is satisfied. By the extreme value theorem, the function f has a maximum on the closed and bounded set given by $x_{1}^{2}+x_{2}^{2} \leq 1$ (a circular disk with radius one), and therefore $\left(x_{1}, x_{2}\right)=(0,1)$ is a maximum point.

Optimization problems with inequality constraints

Kuhn-Tucker conditions for minima

General principle: A minimum for $f(\mathbf{x})$ is a maximum for $-f(\mathbf{x})$. Using this principle, we can write down Kuhn-Tucker conditions for minima:

Kuhn-Tucker conditions for minima

There are Kuhn-Tucker conditions for minima in a similar way as for maxima. The only difference is that the complementary slackness conditions are

$$
\lambda_{j} \leq 0 \text { for } j=1,2, \ldots, m \text { and } \lambda_{j}=0 \text { whenever } g_{j}(\mathbf{x})<b_{j}
$$

in the case of minima.

