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Envelope theorems

In economic optimization problems, the objective functions that we try to
maximize/minimize often depend on parameters, like prices. We want to
find out how the optimal value is affected by changes in the parameters.

Example

Let f(x;a) = —x? + 2ax + 4a® be a function in one variable x that
depends on a parameter a. For a given value of a, the stationary points of

f is given by

g=—2x+2a:0 & x=a
Ox

and this is a (local and global) maximum point since f(x; a) is concave
considered as a function in x. We write x*(a) = a for the maximum point.
The optimal value function f*(a) = f(x*(a); a) = —a® + 2a® + 4a* = 5a°
gives the corresponding maximum value.
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Envelope theorems: An example

Example (Continued)

The derivative of the value function is given by

or* 0 N _2 n
= f(x"(a);ia) = - (547) = 10

On the other hand, we see that f(x; a) = —x2 4 2ax + 4a° gives

g:2x+8a == g =2a+8a=10a
Oa 0a ) i (2)

since x*(a) = a.

The fact that these computations give the same result is not a
coincidence, but a consequence of the envelope theorem for unconstrained
optimization problems:

Eivind Eriksen (Bl Dept of Economics) Lecture 7 October 15, 2010 3/20

Envelope theorems

Envelope theorem for unconstrained maxima

Theorem

Let f(x; a) be a function in n variables xi, . .., x, that depends on a
parameter a. For each value of a, let x*(a) be a maximum or minimum
point for f(x; a). Then

0 “(a):a) = [ 2F
% f(x (a),a) B <8a>x—X*(3)

The following example is a modification of Problem 3.1.2 in [FMEA]:

Example

A firm produces goods A and B. The price of A is 13, and the price of B is
p. The profit function is w(x,y) = 13x + py — C(x, y), where

C(x,y) = 0.04x> — 0.01xy + 0.01y? + 4x + 2y + 500

Determine the optimal value function 7*(p). Verify the envelope theorem.
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Envelope theorems

Envelope theorems: Another example

Solution

The profit function is w(x,y) = 13x + py — C(x, y), hence we compute
7(x,y) = —0.04x? + 0.01xy — 0.01y? 4+ 9x + (p — 2)y — 500
The first order conditions are

mx = —0.08x 4 0.01y +9 =0 = 8x — y = 900
my, = 0.01x —0.02y + p—2=0= x — 2y = 200 — 100p

This is a linear system with unique solution x* = 1—15(1600 + 100p) and
y* = £(—700 + 800p). The Hessian 7" = (o1’ "o02) is negative
definite since D; = —0.08 < 0 and D, = 0.0015 > 0. We conclude that

(x*,y*) is a (local and global) maximum for .
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Envelope theorems

Envelope theorems: Another example
Solution (Continued)
Hence the optimal value function *(p) = w(x*, y*) is given by

80p> — 140p + 80
3

1 1
—(1 100p), — (— _
W ( = (1600 + 100p), 700—|—800p)>

and its derivative is therefore

9 er ) — 160p — 140
op = 3

On the other hand, the envelope theorem says that we can compute the
derivative of the optimal value function as

or ., 1 —140 + 160p
P/ (x,y)=(x*y*)
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Envelope theorems

Envelope theorem for constrained maxima

Theorem

Let f(x; a),g1(x; a), ..., &m(x;a) be functions in n variables xi, . .., x, that
depend on the parameter a. For a fixed value of a, consider the following
Lagrange problem: Maximize/minimize f(x; a) subject to the constraints
gi(x;a) =--- = gm(x;a) = 0. Let x*(a) be a solution to the Lagrange
problem, and let \*(a) = A\j(a), ..., A,,(a) be the corresponding Lagrange
multipliers. If the NDCQ condition holds, then we have

9 f(x*(a); a) = (8—£)
da 03 / ymxr(a) A=A"(a)

Notice that any equality constraint can be re-written in the form used in
the theorem, since

gi(x;a) = bj < gj(x;a) — b =0
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Interpretation of Lagrange multipliers

In a Lagrange problem, the Lagrange function has the form
L(x,A) = f(x) = A(g1(x) = b1) — ... Am(gm(x) — bm)
Hence we see that the partial derivative with respect to the parameter

a = b;j is given by
oCc

e W
ob; /
By the envelope theorem for constrained maxima, this gives that
of (x*
<) _ yr
ob; J
where x* is the solution to the Lagrange problem, AJ,..., A7, are the

corresponding Lagrange multipliers, and f(x*) is the optimal value
function.
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Envelope theorems

Envelope theorems: A constrained example

Example

Consider the following Lagrange problem: Maximize f(x,y) = x + 3y
subject to g(x,y) = x> + ay? = 10. When a = 1, we found earlier that
x*(1) = (1,3) is a solution, with Lagrange multiplier \*(1) = 1/2 and
maximum value f*(1) = f(x*(1)) = f(1,3) = 10. Use the envelope
theorem to estimate the maximum value f*(1.01) when a = 1.01, and
check this by computing the optimal value function f*(a).

Solution
The NDCQ condition is satisfied when a # 0, and the Lagrangian is given
by

L= x4 3y — \(x* + ay? — 10)

Eivind Eriksen (Bl Dept of Economics) Lecture 7 October 15, 2010 9/20

Envelope theorems

Envelope theorems: A constrained example

Solution (Continued)

By the envelope theorem, we have that

of*(a) B 5 9
( 93 >al = (v )x:(1,3),)\:1/2 D)

An estimate for f*(1.01) is therefore given by

o0f*(a)
Oa

f*(1.01) >~ f*(1) + 0.01 - ( ) — 10 — 0.045 = 9.955
a=1

To find an exact expression for f*(a), we solve the first order conditions:

oL 1

™ 1-XA-2x=0=x ™
oL 3
oy 3 y=0=y 2a\
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Envelope theorems

Envelope theorems: A constrained example

Solution (Continued)

We substitute these values into the constraint x> + ay? = 10, and get

1 a+9

4ax2 10

40a
solutions for x*(a), y*(a) and f*(a) (see Lecture Notes for details). For

a = 1.01, this gives x*(1.01) ~ 1.0045, y*(1.01) ~ 2.9836 and
£*(1.01) ~ 9.9553.

This gives A = &1/ 252 when a > 0 or a < —9. Substitution gives

Eivind Eriksen (Bl Dept of Economics) Lecture 7 October 15, 2010 11 / 20

Bordered Hessians

Bordered Hessians

The bordered Hessian is a second-order condition for local maxima and
minima in Lagrange problems. We consider the simplest case, where the
objective function f(x) is a function in two variables and there is one
constraint of the form g(x) = b. In this case, the bordered Hessian is the

determinant / /
0 g 8>

_ / /! !/
B=lg L1 L7
/ /! /!
125, 21 22

Example

Find the bordered Hessian for the following local Lagrange problem: Find
local maxima/minima for f(xy1, x2) = x1 + 3x2 subject to the constraint
g(x1,x) = x2 + x5 = 10.
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Bordered Hessians

Bordered Hessians: An example

Solution

The Lagrangian is £ = x1 + 3xo — A(x? + x5 — 10). We compute the
bordered Hessian

0 2X1 2X2

B=12x; —2)\ 0 |=—2xi(—4xi)\) + 2x2(4x0)\) = 8A\(x} + x3)
2X2 0 —2A

and since x? + x3 = 10 by the constraint, we get B = 80\. We solved the
first order conditions and the constraint earlier, and found the two
solutions (x1,x2,A) = (1,3,1/2) and (x1,x2,A) = (—1,—3,—1/2). So the
bordered Hessian is B =40 in x = (1,3), and B = —40 in x = (—1, —3).
Using the following theorem, we see that (1, 3) is a local maximum and
that (—1,—3) is a local minimum for f(x1,x2) subject to x2 + x5 = 10.

v
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Bordered Hessians

Bordered Hessian Theorem

Theorem

Consider the following local Lagrange problem: Find local maxima/minima
for f(x1,x2) subject to g(x1,x2) = b. Assume that x* = (x7, x5 ) satisfy
the constraint g(x{,x3) = b and that (x;',x3, \*) satisfy the first order
conditions for some Lagrange multiplier \*. Then we have:
@ If the bordered Hessian B(x{, x5, \*) < 0, then (x{,x3) is a local
minima for f(x) subject to g(x) = b.
@ If the bordered Hessian B(x{,x3,\*) > 0, then (x{,x3) is a local
maxima for f(x) subject to g(x) = b.
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Optimization problems with inequality constraints

We consider the following optimization problem with inequality constraints:

Optimization problem with inequality constraints

Maximize/minimize f(x) subject to the inequality constraints gi(x) < by,
g2(x) < b2a <. ,gm(x) < bm'

In this problem, f and g1, ..., gn are function in n variables x1, x2, ..., X,
and by, by, ..., b, are constants.

Example (Problem 8.9)

Maximize the function f(x1,xp) = X12 + x22 + xp — 1 subject to
g(XlaXQ) — X12 +X22 < 1.

To solve this constrained optimization problem with inequality constraints,
we must use a variation of the Lagrange method.
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Kuhn-Tucker conditions

Definition
Just as in the case of equality constraints, the Lagrangian is given by

L(x,A) = (x) = A1(81(x) — b1) — Aa(g2(x) = b2) — - = Am(&m(X) — bm)

In the case of inequality constraints, we solve the Kuhn-Tucker conditions

in additions to the inequalities g1(x) < b1, ..., gm(x) < bpm. The

Kuhn-Tucker conditions for maximum consist of the first order conditions
oL oL oL oL
— = =0, —=0, ..., =
0x1 Oxn

0, 0

8—><2 - 8X3
and the complementary slackness conditions given by
Aj>0forj=1,2,...,mand \; = 0 whenever gj(x) < b;

When we solve the Kuhn-Tucker conditions together with the inequality
constraints g1(x) < by, ..., gm(x) < by, we obtain candidates for
maximum.
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Necessary condition

Theorem

Assume that x* = (x{, ..., xy,) solves the optimization problem with
inequality constraints. If the NDCQ condition holds at x*, then there are
unique Lagrange multipliers A1, ..., Am such that (x{,..., x5, A1,..., Am)
satisfy the Kuhn-Tucker conditions.

Given a point x* satisfying the constraints, the NDCQ condition holds if
the rows in the matrix

0 0 0
g—i(x*) g—i(x*) g—i(x*)
8—%(x*) a—fj(x*) a—f’f(x*)
15) m. 0 m- . 0 m.
%}q(x*) %(x*) 8’;’(” (x*)

corresponding to constraints where gj(x*) = b; are linearly independent.
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Kuhn-Tucker conditions: An example

Solution (Problem 8.9)

The Lagrangian is L = x? + x5 + xo — 1 — A>3 + x3 — 1), so the first
order conditions are

2x1 — )\(2X1) =0= 2X1(1 — )\) =0
2xo + 1 — )\(2X2) =0= 2X2(1 — )\) =—1

From the first equation, we get x; =0 or A = 1. But A\ = 1 is not possible
by the second equation, so x; = 0. The second equation gives x, = 2(1_—_1>\)
since A # 1. The complementary slackness conditions are A > 0 and A =0
if x{ + x5 < 1. We get two cases to consider. Case 1: x? + x5 < 1,A = 0.
In this case, xp = —1/2 by the equation above, and this satisfy the
inequality. So the point (x1,x2,A) = (0,—1/2,0) is a candidate for
maximality. Case 2: X12 + x22 =1,A>0. Since x; =0, we get xo = £1.

v
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Kuhn-Tucker conditions: An example

Solution (Problem 8.9 Continued)

We solve for \ in each case, and check that A > 0. We get two candidates
for maximality, (x1,x2, A) = (0,1,3/2) and (x1,x2, A\) = (0, —1,1/2). We
compute the values, and get

£(0,—1/2) = —1.25
f(0,1) =1
£(0,—1) = —1

We must check that the NDCQ condition holds. The matrix is (2x1  2x2).
lfx12 + x22 < 1, the NDCQ condition is empty. lfx12 + x22 =1, the NDCQ
condition is that (2x; 2x») has rank one, and this is satisfied. By the
extreme value theorem, the function f has a maximum on the closed and
bounded set given by x? + x3 < 1 (a circular disk with radius one), and
therefore (x1,x2) = (0,1) is a maximum point.

v
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Kuhn-Tucker conditions for minima

General principle: A minimum for f(x) is a maximum for —f(x). Using
this principle, we can write down Kuhn-Tucker conditions for minima:

Kuhn-Tucker conditions for minima

There are Kuhn-Tucker conditions for minima in a similar way as for
maxima. The only difference is that the complementary slackness
conditions are

Aj <O0forj=1,2,...,mand \j =0 whenever g;j(x) < b;

in the case of minima.
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