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Locale extreme points

Local extremal points

We define local maxima and minima for functions in several variables:

Definition (Local Extremal Points)

Let f (x) be a function in n variables defined on a set S ⊆ Rn. A point
x∗ ∈ S is called a local maximum point for f if

f (x∗) ≥ f (x) for all x ∈ S close to x∗

and a local minimum point for f if

f (x∗) ≤ f (x) for all x ∈ S close to x∗

If x∗ is a local maximum or minimum point for f , then we call f (x∗) the
local maximum or minimum value.

A local extremal point is a local maximum or a local minimum point.
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Locale extreme points

Global extremal points

For comparison, we review the definition of global extremal points from
the previous lecture:

Definition (Global Extremal Points)

Let f (x) be a function in n variables defined on a set S ⊆ Rn. A point
x∗ ∈ S is called a global maximum point for f if

f (x∗) ≥ f (x) for all x ∈ S

and a global minimum point for f if

f (x∗) ≤ f (x) for all x ∈ S

A global extremal point is a global maximum or a global minimum point.
Clearly, we have

global extremal point⇒ local extremal point
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Locale extreme points

Local and global extremal points: An example

We draw the graph of a function f (x) in one variable defined on [0, 4], and
show local and global extremal points:

We see that A,B,C ,D,E are local extremal points, while B and C are the
only global extremal points.
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Locale extreme points

First order conditions

Let f (x) be a function in n variables defined on a set S ⊆ Rn. We recall
that a stationary point x for f is a solution of the first order conditions

f ′1(x) = f ′2(x) = · · · = f ′n(x) = 0

In general, we compute the stationary points by solving the first order
conditions. This gives a system of n equations in n unknowns. In the
previous example, the stationary points are B,C ,D.

Proposition

If x∗ is a local extremal point of f that is not on the boundary of S, then
x∗ is a stationary point.

Hence stationary points are candidates for local extremal points. How do
we determine which stationary points are local maxima and minima?
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Locale extreme points

Second order conditions

Let f (x) be a function in n variables defined on a set S ⊆ Rn. An interior
point is a point in S that is not on the boundary of S .

Theorem (Second derivative test)

Let x∗ be a interior stationary point for f . Then we have

1 If the Hessian f ′′(x∗) is positive definite, then x∗ is a local minimum.

2 If the Hessian f ′′(x∗) is negative definite, then x∗ is a local maximum.

3 If the Hessian f ′′(x∗) is indefinite, then x∗ is neither a local minimum
nor a local maximum.

A stationary point that is neither a local maximum nor a local minimum, is
called a saddle point.
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Locale extreme points

An example

Example

Let f (x1, x2, x3) = x3
1 + 3x1x2 + 3x1x3 + x3

2 + 3x2x3 + x3
3 . Show that

x∗ = (−2,−2,−2) is a local maximum for f .

Solution

We write down the first order conditions for f , which are

f ′1 = 3x2
1 + 3x2 + 3x3 = 0

f ′2 = 3x1 + 3x2
2 + 3x3 = 0

f ′3 = 3x1 + 3x2 + 3x2
3 = 0

We see that x∗ = (−2,−2,−2) is a solution. This implies that x∗ is a
stationary point. To find all stationary points would be possible, but
requires more work.
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Locale extreme points

An example

Solution (Continued)

Next, we find compute the Hessian of f to classify the type of the
stationary point x∗ = (−2,−2,−2):

f ′′(x) =

6x1 3 3
3 6x2 3
3 3 6x3

⇒ f ′′(x∗) =

−12 3 3
3 −12 3
3 3 −12


Since D1 = −12 < 0, D2 = (−12)2 − 9 = 135 > 0 and

D3 =

∣∣∣∣∣∣
−12 3 3

3 −12 3
3 3 −12

∣∣∣∣∣∣ = −1350 < 0

it follows that x∗ is a local maximum point.
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Locale extreme points

An example

Example

Let f (x1, x2, x3) = x3
1 + 3x1x2 + 3x1x3 + x3

2 + 3x2x3 + x3
3 . Show that

x∗ = (0, 0, 0) is a saddle point for f .

Solution

We write down the first order conditions for f , which are

f ′1 = 3x2
1 + 3x2 + 3x3 = 0

f ′2 = 3x1 + 3x2
2 + 3x3 = 0

f ′3 = 3x1 + 3x2 + 3x2
3 = 0

We see that x∗ = (0, 0, 0) is a solution. This implies that x∗ is a stationary
point. In fact, (−2,−2,−2) and (0, 0, 0) are the only stationary points.
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Locale extreme points

An example

Solution (Continued)

Next, we find compute the Hessian of f to classify the type of the
stationary point x∗ = (0, 0, 0):

f ′′(x) =

6x1 3 3
3 6x2 3
3 3 6x3

⇒ f ′′(x∗) =

0 3 3
3 0 3
3 3 0


Since D1 = 0, the method of leading principal minors will not work in this
case. Instead we find the eigenvalues:∣∣∣∣∣∣
−λ 3 3
3 −λ 3
3 3 −λ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
−λ 3 3
3 −λ 3

6− λ 6− λ 6− λ

∣∣∣∣∣∣ = (6− λ)(λ2 + 6λ+ 9) = 0

This gives eigenvalues λ = 6 and λ = −3. Hence the matrix is indefinite
and x∗ is a saddle point.
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Locale extreme points

Second order condition for two variables

Let us consider the special case where f is a function in two variables
(n = 2). In this case the Hessian of f at a stationary point x∗ can be
written as

f ′′(x∗) =

(
f ′′11(x∗) f ′′12(x∗)
f ′′21(x∗) f ′′22(x∗)

)
=

(
A B
B C

)
where A = f ′′11(x∗),B = f ′′12(x∗) and C = f ′′22(x∗). Since the leading
principal minors are

D1 = A, D2 = AC − B2

we recover the second derivative test for an interior stationary point x∗:

Second derivative test for n = 2

If AC − B2 > 0 and A > 0, then x∗ is a local minimum.

If AC − B2 > 0 and A < 0, then x∗ is a local maximum.

If AC − B2 < 0, then x∗ is a saddle point.
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Locale extreme points

Another example

Example

Let f (x1, x2, x3) = −2x4
1 + 2x2x3 − x2

2 + 8x1. Find all stationary points of
the f (x) and classify their type.

Solution

We write down the first order conditions for f , which are

f ′1 = −8x3
1 + 8 = 0

f ′2 = 2x3 − 2x2 = 0

f ′3 = 2x2 = 0

From these we obtain x2 = 0, x3 = 0 and x1 = 1, so there is one stationary
point x∗ = (1, 0, 0).
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Locale extreme points

Another example

Solution (Continued)

Next, we find compute the Hessian of f to classify the type of the
stationary point x∗ = (1, 0, 0):

f ′′(x) =

−24x2
1 0 0

0 −2 2
0 2 0

⇒ f ′′(x∗) =

−24 0 0
0 −2 2
0 2 0


We have D1 = −24, D2 = (−24)(−2) = 48 and D3 = (−24)(−4) = 96,
and it follows that the matrix is indefinite and that x∗ is a saddle point.
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Locale extreme points

Inconclusive second derivative test

In the case n = 2, we know that the second derivative test is inconclusive
if AC − B2 = 0. In this case, all can happen (the interior stationary point
can be a local maximum, local minimum or saddle point).

Inconclusive second derivative test

If the Hessian f ′′(x∗) at an interior stationary point x∗ is positive or
negative semidefinite but not positive or negative definite (that is, if at
least one of the eigenvalues is zero and all other eigenvalues have the same
sign), then the second derivative test is inconclusive.

Example

Let f1(x) = x4
1 + x4

2 + x4
3 , f2(x) = x3

1 + x3
2 + x3

3 , f3(x) = −x4
1 − x4

2 − x4
3 .

We see that x∗ = (0, 0, 0) is a stationary point for f1, f2, f3, and the
Hessian of all three function is zero at x∗ = (0, 0, 0). In fact, x∗ = (0, 0, 0)
is a local minimum for f1, a saddle point for f2 and a local maximum for f3.
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Lagrange problems

Optimization with constraints

Let f (x) be a function defined on S ⊆ Rn. So far, we have considered
methods for finding local (and global) extremal points in the interior of S .
However, we must also consider methods for finding extremal points on
the boundary of S . This leads to optimization problems with constraints.

Example

Find the extremal points of f (x1, x2) = x2
1 − x2

2 when x1 ≥ 0 and x2 ≥ 0.

We have seen how to find extremal points in the interior of S , where
S = {(x1, x2) : x1 ≥ 0, x2 ≥ 0}. The boundary of S is the positive x1-axis
(x1 ≥ 0, x2 = 0) and the positive x2-axis (x1 = 0, x2 ≥ 0). We are
therefore left with the problem of finding minimum/maximum of f (x1, x2)
when x1x2 = 0, x1, x2 ≥ 0. This is a typical optimization problem with
constraints.
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Lagrange problems

Lagrange problems

Lagrange problems

Let f (x) be a function in n variables, and let

g1(x) = b1, g2(x) = b2, . . . , gm(x) = bm

be m equality constraints, given by functions g1, . . . , gm and constants
b1, . . . , bm. The problem of finding the maximum or minimum of f (x)
when x satisfy the constraints g1(x) = b1, . . . , gm(x) = bm is called the
Lagrange problem with objective function f and constraint functions
g1, g2, . . . , gm.

The Lagrange problem is the general optimization problem with equality
constraints. We shall describe a general method for solving Lagrange
problems.
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Lagrange problems

The Lagrangian

Definition

The Lagrangian or Lagrange function is the function

L(x, λ) = f (x)− λ1(g1(x)− b1)− λ2(g2(x)− b2)− · · · − λm(gm(x)− bm)

in the n + m variables x1, . . . , xn, λ1, . . . , λm. The variables λ1, . . . , λm are
called Lagrange multipliers.

To solve the Lagrange problem, we solve the system of equations
consisting of the n first order conditions

∂L
∂x1

= 0,
∂L
∂x2

= 0,
∂L
∂x3

= 0, . . . ,
∂L
∂xn

= 0

together with the m equality constraints g1(x) = b1, . . . , gm(x) = bm. The
solutions give us candidates for optimality.
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Lagrange problems

The Lagrangian: An example

Example

Find the candidates for optimality for the following Lagrange problem:
Maximize/minimize the function f (x1, x2) = x1 + 3x2 subject to the
constraint x2

1 + x2
2 = 10.

Solution

To formulate this problem as a standard Lagrange problem, let
g(x1, x2) = x2

1 + x2
2 be the constraint function and let b = 10. (We write

g for g1, b for b1 and λ for λ1 when there is only one constraint). We
form the Lagrangian

L(x1, x2, λ) = f (x)− λ(g(x)− 10) = x1 + 3x2 − λ(x2
1 + x2

2 − 10)

Eivind Eriksen (BI Dept of Economics) Lecture 6 Local Extremal Points October 08, 2010 18 / 29



Lagrange problems

The Lagrangian: An example

Solution (Continued)

The first order conditions become

∂L
∂x1

=
∂f

∂x1
− λ ∂g

∂x1
= 1− λ · 2x1 = 0⇒ x1 =

1

2λ
∂L
∂x2

=
∂f

∂x1
− λ ∂g

∂x1
= 3− λ · 2x2 = 0⇒ x2 =

3

2λ

and the constraint is x2
1 + x2

2 = 10. We may solve this system of
equations, and obtain two solutions (x1, x2, λ) = (1, 3, 12) and
(x1, x2, λ) = (−1,−3,−1

2). Hence the points (x1, x2) = (1, 3) and
(x1, x2) = (−1,−3) are the candidates for optimality.
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Lagrange problems

Alternative Lagrangian

Since the first order conditions have the form

∂L
∂xi

= 0 ⇔ ∂f

∂xi
− λ1

∂g1
∂xi
− · · · − λm

∂gm
∂xi

= 0

for 1 ≤ i ≤ n, they are unaffected by the constants bi . It is therefore
possible to use the following alternative Lagrangian:

L(x, λ) = f (x)− λ1g1(x)− λ2g2(x)− · · · − λmgm(x)

This alternative Lagrangian is simpler. The advantage of the first form of
Lagrangian is that the constraints can be obtained as

∂L
∂λi

= 0 ⇔ gi (x) = bi
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Lagrange problems

Non-degenerate constraint qualification

The NDCQ condition

The non-degenerate constraint qualification (or NDCQ) condition is
satisfied if

rk


∂g1
∂x1

(x) ∂g1
∂x2

(x) . . . ∂g1
∂xn

(x)
∂g2
∂x1

(x) ∂g2
∂x2

(x) . . . ∂g2
∂xn

(x)
...

...
. . .

...
∂gm
∂x1

(x) ∂gm
∂x2

(x) . . . ∂gm
∂xn

(x)

 = m

Note that m < n in most Lagrange problems (that is, the number of
constraints is less than the number of variables). If not, the set of points
satisfying the constraints would usually not allow for any degrees of
freedom.
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Lagrange problems

Necessary conditions

Theorem

Let the functions f , g1, . . . , gm in a Lagrange problem be defined on a
subset S ⊆ Rn. If x∗ is a point in the interior of S that solves the
Lagrange problem and satisfy the NDCQ condition, then there exist unique
numbers λ1, . . . , λm such that x∗1 , . . . , x

∗
n , λ1, . . . , λm satisfy the first order

conditions.

Important remark

This theorem implies that any solution of the Lagrange problem can be
extended to a solution of the first order conditions. This means that if we
solve the system of equations that includes the first order conditions and
the constraints, we obtain candidates for optimality.
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Lagrange problems

The Lagrangian: An example

Example

Maximize/minimize the function f (x1, x2) = x1 + 3x2 subject to the
constraint x2

1 + x2
2 = 10.

Solution

We found candidates for optimality by solving the first order conditions
and the constraint earlier, and found two solutions (1, 3) and (−1,−3).
We compute f (1, 3) = 10 and f (−1,−3) = −10. Also, the NDCQ is
satisfied in those points, since

(
g ′x g ′y

)
= (2x 2y) is non-zero at (1, 3)

and (−1,−3). We conclude that if there is a maximum point, then it must
be (1, 3), and if there is a minimum point, then it must be (−1,−3).
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Lagrange problems

Extreme value theorem

A set S ⊆ Rn is closed if it contains its boundary. Subsets defined by
equalities and inequalities defined by ≥ or ≤ are usually closed.

A set S ⊆ Rn is bounded if all points in S are contained in a ball with
a finite radius. For instance, {(x , y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2} is
bounded, while the first quadrant {(x , y) : x ≥ 0, y ≥ 0} is not.

Theorem

Let f (x) be a continuous function defined on a closed and bounded subset
S ⊆ Rn. Then f has a maximum point and a minimum point in S.
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Lagrange problems

Sufficient conditions

Theorem

Let x∗ be a point satisfying the constraints, and assume that there exist
numbers λ∗1, . . . , λ

∗
m such that (x∗1 , . . . , x

∗
n , λ

∗
1, . . . , λ

∗
m) satisfy the first

order conditions. Then we have:

1 If L(x) is convex as a function in x (with λi = λ∗i fixed), then x∗ is a
solution to the minimum Lagrange problem.

2 If L(x) is concave as a function in x (with λi = λ∗i fixed), then x∗ is a
solution to the maximum Lagrange problem.

Let us review the previous example, using this theorem:

Example

Maximize/minimize the function f (x1, x2) = x1 + 3x2 subject to the
constraint x2

1 + x2
2 = 10.
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Lagrange problems

Sufficient conditions: An example

Solution

The Lagrangian for this problem is

L(x , y , λ) = x + 3y − λ(x2 + y2 − 10)

We found one solution (x , y , λ) = (1, 3, 12) of the first order conditions,
and when we fix λ = 1

2 , we get the Lagrangian

L(x , y) = x + 3y − 1

2
(x2 + y2)− 5

This function is clearly concave, so (x , y) = (1, 3) is a maximum point.
Similarly, (x , y) = (−1,−3) is a minimum point since L(x , y) is convex
when we fix λ = −1

2 .
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Lagrange problems

Sufficient conditions: Another example

Example

Solve the first order conditions for the following Lagrange problem:
Maximize f (x1, x2, x3) = x1x2x3 subject to g1(x1, x2, x3) = x2

1 + x2
2 = 1

and g2(x1, x2, x3) = x1 + x3 = 1.

Solution

The NDCQ condition is that the following matrix has rank two:(
∂g1
∂x1

(x) ∂g1
∂x2

(x) ∂g1
∂x3

(x)
∂g2
∂x1

(x) ∂g2
∂x2

(x) ∂g2
∂x3

(x)

)
=

(
2x1 2x2 0
1 0 1

)
This is clearly the case unless x1 = x2 = 0, and this is impossible because
of the first constraint. So the NDCQ is satisfied for all points satisfying
the constraints.
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Lagrange problems

Sufficient conditions: Another example

Solution (Continued)

The first order conditions are given by

∂L
∂x1

= x2x3 − λ1 · 2x1 − λ2 · 1 = 0

∂L
∂x2

= x1x3 − λ1 · 2x2 − λ2 · 0 = 0

∂L
∂x3

= x1x2 − λ1 · 0− λ2 · 1 = 0

We solve the last two equations for λ1 and λ2, and get

λ1 =
x1x3
2x2

, λ2 = x1x2

We substitute this into the first equation, and get
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Lagrange problems

Sufficient conditions: Another example

Solution (Continued)

x2x3 −
x1x3
2x2

2x1 − x1x2 = 0 ⇔ x2
2x3 − x2

1x3 − x1x2
2 = 0

Finally, we use that x2
2 = 1− x2

1 and x3 = 1− x1 from the constraints, and
get the equation

(1− x2
1 )(1− x1)− x2

1 (1− x1)− x1(1− x2
1 ) = 0

We see that (1− x1) is a common factor, and obtain the equation

(1− x1)(1− x2
1 − x2

1 − x1(1 + x1)) = (1− x1)(−3x2
1 − x1 + 1) = 0

This gives x1 = 1 and x1 = 1
6(−1±

√
13). Solving for x2, x3, λ1, λ2, we get

5 solutions in total (see the lecture notes for details).
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