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Quadratic forms

Quadratic forms

Definition

A quadratic form in the variables x1, x2, . . . , xn is a polynomial function Q
where all terms in the functional expression Q(x1, x2, . . . , xn) have order
two.

Example

Q(x1, x2, x3) = x2
1 + x2

2 + 3x2x3 − x2
3 is a quadratic form in three

variables

f (x1, x2) = x2
1 − x2

2 + 3x1 + 2x2 is polynomial of degree two but not a
quadratic form. It can be written as a sum f = L + Q of a linear form
L(x1, x2) = 3x1 + 2x2 and a quadratic form Q(x1, x2) = x2

1 − x2
2 .
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Quadratic forms

The symmetric matrix of a quadratic form

Lemma

A function f (x1, x2, . . . , xn) in n variables is a quadratic form if and only if
it can be written as

f (x1, x2, . . . , xn) = xTA x, where x =

x1
...

xn


for a symmetric n × n matrix A.

The matrix A is uniquely determined by the quadratic form, and is called
the symmetric matrix associated with the quadratic form.

Example

Compute the product xTA x when A is the symmetric 2× 2 matrix
A =

(
1 2
2 −1

)
.
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Quadratic forms

Quadratic forms: An example

Solution

We compute the matrix product

xTA x =
(
x1 x2

)(1 2
2 −1

)(
x1
x2

)
=
(
x1 + 2x2 2x1 − x2

)(x1
x2

)
= x2

1 + 2x2x1 + 2x1x2 − x2
2 = x2

1 + 4x1x2 − x2
2

Note that the result of the matrix multiplication xTA x is, strictly
speaking, the 1× 1 matrix with entry x2

1 + 4x1x2 − x2.

Example

Find the symmetric matrix associated with the quadratic form
Q(x1, x2, x3) = x2

1 + 2x1x2 + x2
2 + 4x2x3 − x2

3 .
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Quadratic forms

Quadratic forms: Another example

Solution

We note that the diagonal entry aii in the matrix A is the coefficient in
front of the term x2

i , and that the sum aij + aji of corresponding entries off
the diagonal in A is the coefficient in front of the term xixj . Since A is
symmetric, aij = aji is half the coefficient in front of xixj . Therefore, the
quadratic form Q(x1, x2, x3) = x2

1 + 2x1x2 + x2
2 + 4x2x3 − x2

3 has
symmetric matrix

A =

1 1 0
1 1 2
0 2 −1
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Quadratic forms

Definiteness

For any quadratic form, we clearly have Q(0) = 0. We want to find out if
x = 0 is a max or min point for Q.

Definition

A quadratic form Q(x) = xTA x and its symmetric matrix A is

positive definite if Q(x) > 0 when x 6= 0

positive semidefinite if Q(x) ≥ 0 when x 6= 0

negative definite if Q(x) < 0 when x 6= 0

negative semidefinite if Q(x) ≤ 0 when x 6= 0

indefinite if Q(x) takes both positive and negative values

Question: Given a quadratic form, how do we determine if it is positive or
negative (semi)definite?
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Quadratic forms

Definiteness and eigenvalues

Proposition

Let Q(x) = xTA x be a quadratic form, let A be its symmetric matrix, and
let λ1, λ2, . . . , λn be the eigenvalues of A. Then:

Q is positive definite ⇔ λ1, λ2, . . . , λn > 0

Q is positive semidefinite ⇔ λ1, λ2, . . . , λn ≥ 0

Q is negativ definite ⇔ λ1, λ2, . . . , λn < 0

Q is negative semidefinite ⇔ λ1, λ2, . . . , λn ≤ 0

A is indefinite ⇔ there exists λi > 0 and λj < 0

Note that a symmetric matrix is diagonalizable; hence it has n real
eigenvalues (but there may be repetitions).
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Quadratic forms

Definiteness and eigenvalues

Idea of proof: If A is diagonal, then Q(x) = λ1x2
1 + λ2x2

2 + · · ·+ λnx2
n and

it is not difficult to see that the result is correct. In general, A may be
non-diagonal, but it is always diagonalizable, and this can be used to show
that the result is correct in general.

Example

Determine the definiteness of Q(x) = −x2
1 + 6x1x2 − 9x2

2 − 2x2
3 .

Solution

The symmetric matrix associated with the quadratic form Q is given by

A =

−1 3 0
3 −9 0
0 0 −2
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Quadratic forms

Definiteness: An example

Solution (Continued)

We compute the eigenvalues of A using the characteristic equation:

det(A− λI ) =

∣∣∣∣∣∣
−1− λ 3 0

3 −9− λ 0
0 0 −2− λ

∣∣∣∣∣∣ = (−2− λ)(λ2 + 10λ) = 0

We see that the eigenvalues are λ = −2, λ = 0, λ = −10. Hence Q is
negative semidefinite.

This example shows that x = 0 is a maximum point for the quadratic form
Q(x) = −x2

1 + 6x1x2 − 9x2
2 − 2x2

3 , since Q(x) ≤ 0 for all x 6= 0 and
Q(0) = 0.
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Convex subsets

Convex subsets

Let Rn be the n-dimensional space, and let A = (a1, a2, . . . , an) and
B = (b1, b2, . . . , bn) be two point in Rn described by their coordinates.
We denote the straight line between A and B by [A,B].

We call [A,B] the line segment from A to B.
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Convex subsets

Definition: Convex subsets

Definition

A subset S ⊆ Rn is convex if the following condition holds: Whenever
A,B ∈ S are point in S, the line segment [A,B] is entirely in S.

Example

Let S ⊆ R2 be the marked circular disk in the plane. This is a convex
subset of the plane, since the line segment between any two points in the
circular disk is entirely within the disk.
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Convex subsets

Convex subsets: An example

Example

Let S ⊆ R2 be the marked area in the plane. This is not a convex subset
of the plane, since there is a line segment between two points in S that is
not entirely within S.
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Convex subsets

Concrete description of line segments

Let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) be points in Rn. We may
consider the coordinates as vectors

a =


a1
a2
...

an

 , b =


b1

b2
...

bn


Parametrization of line segments

The line segment [A,B] can be parametrized as

[A,B] : (1− t)a + tb for t ∈ [0, 1]
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Convex and concave functions

Convex and concave functions in one variable

We shall generalize the notion of convex and concave functions from one
variable to several variables. We recall the situation in the case of one
variable:

Functions of one variable

A function f in one variable defined on an interval I ⊆ R is convex if
f ′′(x) ≥ 0 for all x ∈ I , and concave if f ′′(x) ≤ 0 for all x ∈ I . The graph
of convex and concave function have the following shapes:

Convex:
⋃

Concave:
⋂

If f is a quadratic form in one variable, it can be written as f (x) = ax2. In
this case, f is convex if a ≥ 0 and concave if a ≤ 0.
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Convex and concave functions

Convex and concave functions in several variables

When f (x1, x2, . . . , xn) is a function in n variables, its graph is given by the
equation xn+1 = f (x1, x2, . . . , xn) and it can be drawn in a coordinate
system of dimension n + 1.

Definition

Let f be a function in n variables defined on a convex subset S ⊆ Rn.
Then we define that

f is convex if the line segment joining any two points of the graph of
f is never under the graph.

f is concave if the line segment joining any two points of the graph of
f is never over the graph.
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Convex and concave functions

Example: A convex function in two variables

Figure: The graph of the function f (x , y) = x2 + y2
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Convex and concave functions

Concrete conditions for convexity

Let A = (a1, . . . , an) and B = (b1, . . . , bn) be any two points in S , and let
a,b be the corresponding column vectors. Then we have the following
concrete conditions of convexity:

Concrete conditions

f is convex ⇔ f ((1− t)a + tb) ≤ (1− t)f (a) + tf (b) for all a,b ∈ S
and all t ∈ [0, 1]

f is concave ⇔ f ((1− t)a + tb) ≥ (1− t)f (a) + tf (b) for all
a,b ∈ S and all t ∈ [0, 1]

Idea of proof: We know that v = (1− t)a + tb is a point on the line
segment [A,B]. So the first expression in each inequality is f (v), the xn+1

coordinate of a point on the graph of f , while the second expression is the
xn+1 coordinate of the line segment between (A, f (A)) and (B, f (B)).
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Convex and concave functions

Strictly convex and concave functions

Definition

Let f be a function in n variables defined on a convex subset S ⊆ Rn.
Then we define that

f is strictly convex if the line segment joining any two points of the
graph of f is entirely over the graph between A and B, i.e.

f ((1− t)a + tb) < (1− t)f (a) + tf (b) for t ∈ (0, 1)

f is strictly concave if the line segment joining any two points of the
graph of f is entirely under the graph between A and B, i.e.

f ((1− t)a + tb) > (1− t)f (a) + tf (b) for t ∈ (0, 1)
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Convex and concave functions

Concrete conditions: An example

Example

Let f (x1, x2) = x1 + x2. Is f convex or concave?

Solution

In this case, f is defined on S = R2. For any points A = (a1, a2) and
B = (b1, b2) in R2, we have that

f ((1− t)a + tb) = f

(
(1− t)a1 + tb1

(1− t)a2 + tb2

)
= (1− t)(a1 + a2) + t(b1 + b2)

and
(1− t)f (a) + tf (b) = (1− t)(a1 + a2) + t(b1 + b2)

We see that these expressions coincide, so f is both convex and concave.
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Convex and concave functions

Properties of convex functions

Theorem

Let f be a function in n variables defined on a convex subset S ⊆ Rn.
Then we have

1 If f is constant or a linear function (polynomial function of degree
one), then f is both convex and concave.

2 f is convex ⇔ −f is concave

3 If f = a1f1 + a2f2, where a1, a2 ≥ 0 and f1, f2 are convex functions
defined on S, then f is convex.

4 If f = a1f1 + a2f2, where a1, a2 ≥ 0 and f1, f2 are concave functions
defined on S, then f is concave.
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Convex and concave functions

Convex functions: Another example

Example

Show that f (x , y) = 2x2 + 3y2 and g(x , y) = 2x2 + 3y2 + x − y + 3 are
convex functions.

Solution

We know that x2 is a convex function in one variable. So the functions x2

and y2 are also convex functions in two variables. Hence f is a convex
function by the second part of the theorem. We also see that x − y + 3 is
a convex functions; it follows from part one of the theorem since it is
linear. Hence g(x , y) = f (x , y) + x − y + 3 is also a convex function.

What can we say about the convexity of more general functions? The first
difficult case is the convexity of quadratic forms.
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Convex and concave functions

Convexity of quadratic forms

Proposition

Let Q(x1, x2, . . . , xn) = xTA x be a quadratic form in n variables, with
associated symmetric matrix A. Then we have:

Q is convex ⇔ A is positive semidefinite

Q is concave ⇔ A is negative semidefinite

Q is strictly convex ⇔ A is positive definite

Q is strictly concave ⇔ A is negative definite

Idea of proof: If A is diagonal with eigenvalues λ1, . . . , λn, then
Q(x1, x2, . . . , xn) = λ1x2

1 + λ2x2
2 + · · ·+ λnx2

n . In this situation, one may
use the sign of the eigenvalues to decide the convexity of Q using the
theorem. If A is not diagonal, it can be diagonalized, and the same type of
argument can be used also in this case.
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