Written examination in: GRA 60353 Mathematics

Examination date: $\quad 30.05 .2011,09: 00-12: 00$
Permitted examination aids:
Bilingual dictionary
BI-approved exam calculator: TEXAS INSTRUMENTS BA II Plus ${ }^{\text {TM }}$
Answer sheets:
Squares
Total number of pages: 1

Question 1.

We consider the function $f(x, y, z, w)=x^{5}+x y^{2}-z w$.
(a) Find all stationary points of f.
(b) Compute the Hessian matrix of f. Classify the stationary points of f as local maxima, local minima or saddle points.

Question 2.

We consider the matrix A and the vector \mathbf{v} given by

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & s & s^{2} \\
1 & -1 & 1
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)
$$

(a) Compute the determinant and the rank of A.
(b) Find all values of s such that \mathbf{v} is an eigenvector for A.
(c) Compute all eigenvalues of A when $s=-1$. Is A diagonalizable when $s=-1$?

Question 3.

(a) Solve the difference equation $x_{t+1}=3 x_{t}+4, x_{0}=2$ and compute x_{5}.
(b) Find the general solution of the differential equation $y^{\prime \prime}+2 y^{\prime}-35 y=11 e^{t}-5$.
(c) Solve the initial value problem $(2 t+y)-(4 y-t) y^{\prime}=0, y(0)=0$.

Question 4.

We consider the function $f(x, y)=x y e^{x+y}$ defined on $D_{f}=\left\{(x, y):(x+1)^{2}+(y+1)^{2} \leq 1\right\}$.
(a) Compute the Hessian of f. Is f a convex function? Is f a concave function?
(b) Find the maximum and minimum values of f.

