

Written examination in:	GRA 60353 Mathematics
Examination date:	30.05.2011, 09:00 - 12:00
Permitted examination aids:	Bilingual dictionary BI-approved exam calculator: TEXAS INSTRUMENTS BA II Plus TM
Answer sheets:	Squares
Total number of pages:	1

QUESTION 1.

We consider the function $f(x, y, z, w) = x^5 + xy^2 - zw$.

- (a) Find all stationary points of f.
- (b) Compute the Hessian matrix of f. Classify the stationary points of f as local maxima, local minima or saddle points.

QUESTION 2.

We consider the matrix A and the vector \mathbf{v} given by

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & s & s^2 \\ 1 & -1 & 1 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

- (a) Compute the determinant and the rank of A.
- (b) Find all values of s such that **v** is an eigenvector for A.
- (c) Compute all eigenvalues of A when s = -1. Is A diagonalizable when s = -1?

QUESTION 3.

- (a) Solve the difference equation $x_{t+1} = 3x_t + 4$, $x_0 = 2$ and compute x_5 .
- (b) Find the general solution of the differential equation $y'' + 2y' 35y = 11e^t 5$.
- (c) Solve the initial value problem (2t + y) (4y t)y' = 0, y(0) = 0.

QUESTION 4.

We consider the function $f(x, y) = xye^{x+y}$ defined on $D_f = \{(x, y) : (x+1)^2 + (y+1)^2 \le 1\}.$

- (a) Compute the Hessian of f. Is f a convex function? Is f a concave function?
- (b) Find the maximum and minimum values of f.