Solutions:

Examination date:

Permitted examination aids:
Bl-approved exam calculator: TEXAS INSTRUMENTS BA II Plus™

Answer sheets:

Total number of pages:

Bilingual dictionary

Squares

GRA 60353 Mathematics

30.05.2011, 09:00-12:00

3

Question 1.
(a) We compute the partial derivatives $f_{x}^{\prime}=5 x^{4}+y^{2}, f_{y}^{\prime}=2 x y, f_{z}^{\prime}=-w$ and $f_{w}^{\prime}=-z$. The stationary points are given by

$$
5 x^{4}+y^{2}=0, \quad 2 x y=0, \quad-w=0, \quad-z=0
$$

and this gives $z=w=0$ from the last two equations, and $x=y=0$ from the first two. The stationary points are therefore $(x, y, z, w)=(0,0,0,0)$.
(b) We compute the second order partial derivatives of f and form the Hessian matrix

$$
f^{\prime \prime}=\left(\begin{array}{cccc}
20 x^{3} & 2 y & 0 & 0 \\
2 y & 2 x & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

We see that the second order principal minor obtained from the last two rows and columns is

$$
\left|\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right|=-1<0
$$

hence the Hessian is indefinite. Therefore, the stationary point is a saddle point.

Question 2.
(a) The determinant of A is given by

$$
\operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & s & s^{2} \\
1 & -1 & 1
\end{array}\right|=2 s^{2}-2=2(s-1)(s+1)
$$

It follows that the rank of A is 3 if $s \neq \pm 1$ (since $\operatorname{det}(A) \neq 0)$. When $s= \pm 1, A$ has rank 2 since $\operatorname{det}(A)=0$ but there is a non-zero minor of order two in each case. Therefore, we get

$$
\operatorname{rk}(A)= \begin{cases}3, & s \neq \pm 1 \\ 2, & s= \pm 1\end{cases}
$$

(b) We compute that

$$
A \mathbf{v}=\left(\begin{array}{c}
1 \\
1+s-s^{2} \\
-1
\end{array}\right), \quad \lambda \mathbf{v}=\left(\begin{array}{c}
\lambda \\
\lambda \\
-\lambda
\end{array}\right)
$$

and see that \mathbf{v} is an eigenvector for A if and only if $\lambda=1$ and $1+s-s^{2}=1$, or $s=s^{2}$. This gives $s=0,1$.
(c) We compute the characteristic equation of A when $s=-1$, and find that

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & -1-\lambda & 1 \\
1 & -1 & 1-\lambda
\end{array}\right|=\lambda\left(2+\lambda-\lambda^{2}\right)=-\lambda(\lambda-2)(\lambda+1)
$$

Therefore, the eigenvalues of A are $\lambda=0,2,-1$ when $s=-1$. Since A has three distinct eigenvalues when $s=-1$, it follows that A is diagonalizable.

Question 3.

(a) We have $x_{t+1}-3 x_{t}=4$, and the homogenous solution is $x_{t}^{h}=C \cdot 3^{t}$. We try to find a particular solution of the form $x_{t}=A$, and substitution in the difference equation gives $A=3 A+4$, so $A=-2$ is a particular solution. Hence the solution of the difference equation is

$$
x_{t}=x_{t}^{h}+x_{t}^{p}=C \cdot 3^{t}-2
$$

The initial value condition is $2=C-2$, hence we obtain the solution

$$
x_{t}=4 \cdot 3^{t}-2
$$

This gives $x_{5}=970$.
(b) The homogeneous equation $y^{\prime \prime}+2 y^{\prime}-35 y=0$ has characteristic equation $r^{2}+2 r-35=0$ and roots $r=5$ and $r=-7$, so $y_{h}=C_{1} e^{5 t}+C_{2} e^{-7 t}$. We try to find a particular solution of the form $y=A e^{t}+B$, which gives

$$
y^{\prime}=y^{\prime \prime}=A e^{t}
$$

Substitution in the differential equation gives

$$
A e^{t}+2 A e^{t}-35\left(A e^{t}+B\right)=11 e^{t}-5 \Leftrightarrow-32 A=11 \text { and }-35 B=-5
$$

This gives $A=-11 / 32$ and $B=1 / 7$. Hence the general solution of the differential equation is $y=y_{h}+y_{p}=C_{1} e^{5 t}+C_{2} e^{-7 t}-\frac{11}{32} e^{t}+\frac{1}{7}$
(c) The differential equation can be written in the form

$$
(2 t+y)+(t-4 y) y^{\prime}=0
$$

and we see that it is exact. Hence its solution can be written in the form $u(y, t)=C$, where $u(y, t)$ is a function that satisfies

$$
\frac{\partial u}{\partial t}=2 t+y \quad \text { and } \quad \frac{\partial u}{\partial y}=t-4 y
$$

One solution is $u(y, t)=t^{2}+t y-2 y^{2}$, and the initial condition $y(0)=0$ gives $C=0$. Hence

$$
t^{2}+t y-2 y^{2}=0 \quad \Leftrightarrow \quad y=\frac{-t \pm 3 t}{-4}
$$

The solution to the initial value problem is therefore

$$
y=-\frac{1}{2} t \text { or } y=t
$$

Question 4.

(a) We compute the Hessian of f, and find

$$
f^{\prime \prime}=e^{x+y}\left(\begin{array}{cc}
(x+2) y & (x+1)(y+1) \\
(x+1)(y+1) & x(y+2)
\end{array}\right)
$$

The principal minors are

$$
\Delta_{1}=e^{x+y}(x+2) y, \Delta_{1}=e^{x+y} x(y+2), \quad D_{2}=\left(e^{x+y}\right)^{2}\left(1-(x+1)^{2}-(y+1)^{2}\right)
$$

Since $(x+1)^{2}+(y+1)^{2} \leq 1, D_{f}$ is a ball with center in $(-1,-1)$ and radius $r=1$, and it follows that $x, y<0$ and $x+2, y+2 \geq 0$, and therefore $\Delta_{1} \leq 0$ and $D_{2} \geq 0$. This means that f is concave, but not convex.
(b) Since D_{f} is closed and bounded, f has maximum and minimum values. We compute the stationary points of f : We have

$$
f_{x}^{\prime}=(x+1) y e^{x+y}=0, \quad f_{y}^{\prime}=x(y+1) e^{x+y}=0
$$

and $(x, y)=(0,0)$ and $(x, y)=(-1,-1)$ are the solutions. Hence there is only one stationary point $(x, y)=(-1,-1)$ in D_{f}, and the $f(-1,-1)=e^{-2}$ is the maximum value of f since f is concave. The minimum value most occur for (x, y) on the boundary of D_{f}. We see that $f(x, y) \geq 0$ for all $(x, y) \in D_{f}$ while $f(-1,0)=f(0,-1)=0$. Hence $f(-1,0)=f(0,-1)=0$ is the minimum value of f.

