

Solutions:	GRA 60353 Mathematics
Examination date:	30.05.2011, 09:00 - 12:00
Permitted examination aids:	Bilingual dictionary BI-approved exam calculator: TEXAS INSTRUMENTS BA II Plus TM
Answer sheets:	Squares
Total number of pages:	3

QUESTION 1.

(a) We compute the partial derivatives $f'_x = 5x^4 + y^2$, $f'_y = 2xy$, $f'_z = -w$ and $f'_w = -z$. The stationary points are given by

$$5x^4 + y^2 = 0$$
, $2xy = 0$, $-w = 0$, $-z = 0$

and this gives z = w = 0 from the last two equations, and x = y = 0 from the first two. The stationary points are therefore $(x, y, z, w) = \boxed{(0, 0, 0, 0)}$.

(b) We compute the second order partial derivatives of f and form the Hessian matrix

$$f'' = \begin{pmatrix} 20x^3 & 2y & 0 & 0\\ 2y & 2x & 0 & 0\\ 0 & 0 & 0 & -1\\ 0 & 0 & -1 & 0 \end{pmatrix}$$

We see that the second order principal minor obtained from the last two rows and columns is

$$\begin{vmatrix} 0 & -1 \\ -1 & 0 \end{vmatrix} = -1 < 0$$

hence the Hessian is indefinite. Therefore, the stationary point is a saddle point.

QUESTION 2.

(a) The determinant of A is given by

$$\det(A) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & s & s^2 \\ 1 & -1 & 1 \end{vmatrix} = 2s^2 - 2 = \boxed{2(s-1)(s+1)}$$

It follows that the rank of A is 3 if $s \neq \pm 1$ (since det $(A) \neq 0$). When $s = \pm 1$, A has rank 2 since det(A) = 0 but there is a non-zero minor of order two in each case. Therefore, we get

$$\operatorname{rk}(A) = \begin{cases} 3, & s \neq \pm 1\\ 2, & s = \pm 1 \end{cases}$$

(b) We compute that

$$A\mathbf{v} = \begin{pmatrix} 1\\1+s-s^2\\-1 \end{pmatrix}, \quad \lambda \mathbf{v} = \begin{pmatrix} \lambda\\\lambda\\-\lambda \end{pmatrix}$$

and see that **v** is an eigenvector for A if and only if $\lambda = 1$ and $1 + s - s^2 = 1$, or $s = s^2$. This gives s = 0, 1.

(c) We compute the characteristic equation of A when s = -1, and find that

$$\begin{vmatrix} 1 - \lambda & 1 & 1 \\ 1 & -1 - \lambda & 1 \\ 1 & -1 & 1 - \lambda \end{vmatrix} = \lambda(2 + \lambda - \lambda^2) = -\lambda(\lambda - 2)(\lambda + 1)$$

Therefore, the eigenvalues of A are $\lambda = 0, 2, -1$ when s = -1. Since A has three distinct eigenvalues when s = -1, it follows that A is diagonalizable.

QUESTION 3.

(a) We have $x_{t+1}-3x_t = 4$, and the homogenous solution is $x_t^h = C \cdot 3^t$. We try to find a particular solution of the form $x_t = A$, and substitution in the difference equation gives A = 3A + 4, so A = -2 is a particular solution. Hence the solution of the difference equation is

$$x_t = x_t^h + x_t^p = C \cdot 3^t - 2$$

The initial value condition is 2 = C - 2, hence we obtain the solution

$$x_t = \boxed{4 \cdot 3^t - 2}$$

This gives $x_5 = 970$.

(b) The homogeneous equation y'' + 2y' - 35y = 0 has characteristic equation $r^2 + 2r - 35 = 0$ and roots r = 5 and r = -7, so $y_h = C_1 e^{5t} + C_2 e^{-7t}$. We try to find a particular solution of the form $y = Ae^t + B$, which gives

$$y' = y'' = Ae^t$$

Substitution in the differential equation gives

$$Ae^{t} + 2Ae^{t} - 35(Ae^{t} + B) = 11e^{t} - 5 \Leftrightarrow -32A = 11 \text{ and } -35B = -5$$

This gives $A = -\frac{11}{32}$ and $B = \frac{1}{7}$. Hence the general solution of the differential equation is $y = y_h + y_p = \boxed{C_1 e^{5t} + C_2 e^{-7t} - \frac{11}{32}e^t + \frac{1}{7}}$

(c) The differential equation can be written in the form

$$(2t+y) + (t-4y)y' = 0$$

and we see that it is exact. Hence its solution can be written in the form u(y,t) = C, where u(y,t) is a function that satisfies

$$\frac{\partial u}{\partial t} = 2t + y$$
 and $\frac{\partial u}{\partial y} = t - 4y$

One solution is $u(y,t) = t^2 + ty - 2y^2$, and the initial condition y(0) = 0 gives C = 0. Hence

$$t^2 + ty - 2y^2 = 0 \quad \Leftrightarrow \quad y = \frac{-t \pm 3t}{-4}$$

The solution to the initial value problem is therefore

$$y = -\frac{1}{2}t$$
 or $y = t$

QUESTION 4.

(a) We compute the Hessian of f, and find

$$f'' = e^{x+y} \begin{pmatrix} (x+2)y & (x+1)(y+1) \\ (x+1)(y+1) & x(y+2) \end{pmatrix}$$

The principal minors are

$$\Delta_1 = e^{x+y}(x+2)y, \ \Delta_1 = e^{x+y}x(y+2), \quad D_2 = (e^{x+y})^2(1-(x+1)^2-(y+1)^2)$$

Since $(x+1)^2 + (y+1)^2 \leq 1$, D_f is a ball with center in (-1, -1) and radius r = 1, and it follows that x, y < 0 and $x+2, y+2 \geq 0$, and therefore $\Delta_1 \leq 0$ and $D_2 \geq 0$. This means that f is concave, but not convex.

(b) Since D_f is closed and bounded, f has maximum and minimum values. We compute the stationary points of f: We have

$$f'_x = (x+1)ye^{x+y} = 0, \quad f'_y = x(y+1)e^{x+y} = 0$$

and (x, y) = (0, 0) and (x, y) = (-1, -1) are the solutions. Hence there is only one stationary point (x, y) = (-1, -1) in D_f , and the $f(-1, -1) = \boxed{e^{-2}}$ is the maximum value of f since fis concave. The minimum value most occur for (x, y) on the boundary of D_f . We see that $f(x, y) \ge 0$ for all $(x, y) \in D_f$ while f(-1, 0) = f(0, -1) = 0. Hence $\boxed{f(-1, 0) = f(0, -1) = 0}$ is the minimum value of f.