Solutions:

Examination date:
Permitted examination aids:
BI-approved exam calculator: TEXAS INSTRUMENTS BA II Plus ${ }^{\text {TM }}$
Answer sheets:
Total number of pages:

Bilingual dictionary

GRA 60353 Mathematics

10.12.2010, 09:00-12:00

Squares

4

Question 1.

(a) We compute the partial derivatives $f_{x}^{\prime}=\left(x^{2}+2 x\right) e^{x}$, $f_{y}^{\prime}=z$ and $f_{z}^{\prime}=y-3 z^{2}$. The stationary points are given by the equations

$$
\left(x^{2}+2 x\right) e^{x}=0, \quad z=0, \quad y-3 z^{2}=0
$$

and this gives $x=0$ or $x=-2$ from the first equation and $y=0$ and $z=0$ from the last two. The stationary points are therefore $(x, y, z)=(0,0,0),(-2,0,0)$.
(b) We compute the second order partial derivatives of f and form the Hessian matrix

$$
f^{\prime \prime}=\left(\begin{array}{ccc}
\left(x^{2}+4 x+2\right) e^{x} & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -6 z
\end{array}\right)
$$

We see that the second order principal minor obtained from the last two rows and columns is

$$
\left|\begin{array}{cc}
0 & 1 \\
1 & -6 z
\end{array}\right|=-1<0
$$

hence the Hessian is indefinite in all stationary points. Therefore, both stationary points are saddle points.

Question 2.
(a) The determinant of A is given by

$$
\operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 7 & -2 \\
0 & s & 0 \\
1 & 1 & 4
\end{array}\right|=s(4+2)=6 s
$$

It follows that the rank of A is 3 if $s \neq 0($ since $\operatorname{det}(A) \neq 0)$. When $s=0, A$ has rank 2 since $\operatorname{det}(A)=0$ but the minor

$$
\left|\begin{array}{cc}
1 & -2 \\
1 & 4
\end{array}\right|=6 \neq 0
$$

Therefore, we get

$$
\operatorname{rk}(A)= \begin{cases}3, & s \neq 0 \\ 2, & s=0\end{cases}
$$

(b) We compute the characteristic equation of A, and find that

$$
\left|\begin{array}{ccc}
1-\lambda & 7 & -2 \\
0 & s-\lambda & 0 \\
1 & 1 & 4-\lambda
\end{array}\right|=(s-\lambda)\left(\lambda^{2}-5 \lambda+6\right)=(s-\lambda)(\lambda-2)(\lambda-3)
$$

Therefore, the eigenvalues of A are $\lambda=s, 2,3$. Furthermore, we have that

$$
A \mathbf{v}=\left(\begin{array}{l}
6 \\
s \\
6
\end{array}\right)
$$

We see that \mathbf{v} is an eigenvector for A if and only if $s=6$, in which case $A \mathbf{v}=6 \mathbf{v}$.
(c) If $s \neq 2,3$, then A has three distinct eigenvalues, and therefore A is diagonalizable. If $s=2$, we check the eigenspace corresponding to the double root $\lambda=2$: The coefficient matrix of the system has echelon form

$$
\left(\begin{array}{ccc}
-1 & 7 & -2 \\
0 & 0 & 0 \\
1 & 1 & 2
\end{array}\right) \xrightarrow{\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 8 & 0 \\
0 & 0 & 0
\end{array}\right), ~\left(\begin{array}{ll}
\\
0
\end{array}\right)}
$$

of rank two, so there is only one free variable. If $s=3$, we check the eigenspace corresponding to the double root $\lambda=3$: The coefficient matrix of the system has echelon form

$$
\left(\begin{array}{ccc}
-2 & 7 & -2 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 9 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

of rank two, so there is only one free variable. In both cases, there are too few linearly independent eigenvectors, and A is not diagonalizable. Hence A is diagonalixable if $s \neq 2,3$.

Question 3.

(a) We have $b_{t+1}-b_{t}=r b_{t}-s_{t+1}$, where $s_{t+1}=500+10 t$ is the repayment in period $t+1$. Hence we get the difference equation

$$
b_{t+1}=(1+r) b_{t}-(500+10 t), \quad b_{0}=K
$$

The homogenous solution is $b_{t}^{h}=C(1+r)^{t}$. We try to find a particular solution of the form $b_{t}=A t+B$, which gives $b_{t+1}=A t+A+B$. Substitution in the difference equation gives

$$
A t+A+B=(1+r)(A t+B)-(500+10 t)=((1+r) A-10) t+(1+r) B-500
$$

and this gives $A=10 / r$ and $B=10 / r^{2}+500 / r$. Hence the solution of the difference equation is

$$
b_{t}=b_{t}^{h}+b_{t}^{p}=C(1+r)^{t}+\frac{10}{r} t+\frac{10}{r^{2}}+\frac{500}{r}
$$

The initial value condition is $K=C+10 / r^{2}+500 / r$, hence we obtain the solution

$$
b_{t}=\left(K-\frac{10}{r^{2}}-\frac{500}{r}\right)(1+r)^{t}+\frac{10}{r} t+\frac{10}{r^{2}}+\frac{500}{r}
$$

(b) The homogeneous equation $y^{\prime \prime}+y^{\prime}-6 y=0$ has characteristic equation $r^{2}+r-6=0$ and roots $r=2$ and $r=-3$, so $y_{h}=C_{1} e^{2 t}+C_{2} e^{-3 t}$. We try to find a particular solution of the form $y=(A t+B) e^{t}$, which gives

$$
y^{\prime}=(A t+A+B) e^{t}, \quad y^{\prime \prime}=(A t+2 A+B) e^{t}
$$

Substitution in the differential equation gives
$(A t+2 A+B) e^{t}+(A t+A+B) e^{t}-6(A t+B) e^{t}=t e^{t} \Leftrightarrow-4 A=1$ and $3 A-4 B=0$
This gives $A=-1 / 4$ and $B=-3 / 16$. Hence the general solution of the differential equation is $y=y_{h}+y_{p}=C_{1} e^{2 t}+C_{2} e^{-3 t}-\left(\frac{1}{4} t+\frac{3}{16}\right) e^{t}$
(c) The differential equation can be written in the form

$$
\left(3 t^{2}-\frac{1}{y}\right)+\frac{t}{y^{2}} y^{\prime}=0
$$

and we see that it is exact. Hence it can be written of the form $u(y, t)=C$, where $u(y, t)$ is a function that satisfies

$$
\frac{\partial u}{\partial t}=3 t^{2}-\frac{1}{y} \quad \text { and } \quad \frac{\partial u}{\partial y}=\frac{t}{y^{2}}
$$

One solution is $u(y, t)=t^{3}-t / y$, and this gives

$$
t^{3}-\frac{t}{y}=C \quad \Leftrightarrow \quad y=\frac{t}{t^{3}-C}
$$

The initial condition gives $1 /(1-C)=1 / 3$ or $C=-2$. The solution to the initial value problem is therefore

$$
y=\frac{t}{t^{3}+2}
$$

Question 4.

(a) We compute the Hessian of g, and find

$$
g^{\prime \prime}=\frac{1}{x y z}\left(\begin{array}{lll}
\frac{2}{x^{2}} & \frac{1}{x y} & \frac{1}{x z} \\
\frac{1}{x y} & \frac{2}{y^{2}} & \frac{1}{y z} \\
\frac{1}{x z} & \frac{1}{y z} & \frac{2}{z^{2}}
\end{array}\right)
$$

Hence the leading principal minors are

$$
D_{1}=\frac{1}{x y z} \frac{2}{x^{2}}>0, \quad D_{2}=\frac{1}{(x y z)^{2}} \frac{3}{(x y)^{2}}>0, \quad D_{3}=\frac{1}{(x y z)^{3}} \frac{4}{(x y z)^{2}}>0
$$

This means that g is convex.
(b) The set $\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$ is closed and bounded, so the problem has solutions by the extreme value theorem. The NDCQ is satisfied, since the rank of $\left(\begin{array}{lll}2 x & 2 y & 2 z\end{array}\right)=1$ when $x^{2}+y^{2}+z^{2}=1$. We form the Lagrangian

$$
\mathcal{L}=x y z-\lambda\left(x^{2}+y^{2}+z^{2}-1\right)
$$

and solve the Kuhn-Tucker conditions, consisting of the first order conditions

$$
\begin{aligned}
\mathcal{L}_{x}^{\prime} & =y z-\lambda \cdot 2 x
\end{aligned}=0
$$

together with one of the following conditions: i) $x^{2}+y^{2}+z^{2}=1$ and $\lambda \geq 0$ or ii) $x^{2}+y^{2}+z^{2}<1$ and $\lambda=0$. We first solve the equations/inequalities in case i): If $x=0$, then we see that $y=0$ or $z=0$ from the first equation, and we get the solutions $(x, y, z ; \lambda)=(0,0, \pm 1 ; 0),(0, \pm 1,0 ; 0)$. If $x \neq 0$, we get $2 \lambda=y z / x$ and the remaining first order conditions give $\left(x^{2}-y^{2}\right) z=0$ and $\left(x^{2}-z^{2}\right) y=0$. If $y=0$, we get the solution $(\pm 1,0,0 ; 0)$. Otherwise, we get $x^{2}=y^{2}=z^{2}$, hence

$$
(x, y, z ; \lambda)=\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}} ; \pm \frac{1}{2 \sqrt{3}}\right)
$$

The condition that $\lambda \geq 0$ give that either all three coordinates (x, y, z) are positive, or that one is positive and two are negative. In total, we obtain four different solutions. We note that $f(x, y, z)=\frac{1}{3 \sqrt{3}}$ for each of these four solutions, while $f(x, y, z)=0$ for either of the first three solutions. Finally, we consider case ii), where $\lambda=0$. This gives $x y=x z=y z=0$, and we obtain

$$
(x, y, z ; \lambda)=(a, 0,0 ; 0),(0, a, 0 ; 0),(0,0, a ; 0)
$$

The condition that $x^{2}+y^{2}+z^{2}<1$ give $a^{2} \leq 1$ or $a \in(-1,1)$. For all these solutions, we get $f(x, y, z)=0$. We can therefore conclude that the solution to the optimization problem is a maximum value of
$\frac{1}{3 \sqrt{3}}$

