3.1 Introduction to Determinants

Notation: A_{ij} is the matrix obtained from matrix A by deleting the *i*th row and *j*th column of A.

EXAMPLE:

$$A = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{vmatrix} \qquad A_{23} = \begin{vmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 13 & 14 & 15 & 16 \end{vmatrix}$$

Recall that det
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$
 and we let det $[a] = a$.

For $n \ge 2$, the **determinant** of an $n \times n$ matrix $A = [a_{ij}]$ is given by

$$\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$$

$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$$

1

EXAMPLE: Compute the determinant of
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$$

Solution
$$\det A = 1 \det \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix} - 2 \det \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} + 0 \det \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix}$$
$$= \underline{\qquad}$$
$$= \underline{\qquad}$$
Common notation:
$$\det \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} = \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}.$$

So

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 1 \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + 0 \begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix}$$

The (**i**, **j**)-cofactor of *A* is the number C_{ij} where $C_{ij} = (-1)^{i+j} \det A_{ij}$.

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 1C_{11} + 2C_{12} + 0C_{13}$$

(cofactor expansion across row 1)

THEOREM 1 The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column:

$$det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$
(expansion across row *i*)
$$det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$
(expansion down
column *j*)

Use a matrix of signs to determine $(-1)^{i+j}$

					_
	+	—	+	•••	
	_	+	_	•••	
	+	_	+	•••	
	•	•	• •	۰.	
_					_

EXAMPLE: Compute the determinant of $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$

using cofactor expansion down column 3.

Solution

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 0 \begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix} - 2 \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} = 1.$$

EXAMPLE: Compute the determinant of
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

Solution

						1 2 2 2 0 0 0 0	3 4 1 5 2 5 3 5	4 5 1 5						
= 1	2 0 0	1 2 3	5 1 5	- 0	2 3 0 2 0 3	4 1 5	+ 0	2 2 0	3 1 3	4 5 5	- 0	2 2 0	3 1 2	4 5 1
$= 1 \cdot 2 \begin{vmatrix} 2 & 1 \\ 3 & 5 \end{vmatrix} = 14$														

Method of cofactor expansion is not practical for large matrices - see Numerical Note on page 190.

Triangular Matrices:

THEOREM 2: If A is a triangular matrix, then $\det A$ is the product of the main diagonal entries of A.

EXAMPLE:

3.2 **Properties of Determinants**

THEOREM 3 Let *A* be a square matrix.

- a. If a multiple of one row of A is added to another row of A to produce a matrix B, then det A = det B.
- b. If two rows of A are interchanged to produce B, then $\det B = -\det A$.

c. If one row of A is multiplied by k to produce B, then $\det B = k \cdot \det A$.

EXAMPLE: Compute
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 0 & 0 \\ 2 & 7 & 6 & 10 \\ 2 & 9 & 7 & 11 \end{vmatrix}$$
.
Solution
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 0 & 0 \\ 2 & 7 & 6 & 10 \\ 2 & 9 & 7 & 11 \end{vmatrix} = 5 \begin{vmatrix} 1 & 3 & 4 \\ 2 & 6 & 10 \\ 2 & 7 & 11 \end{vmatrix} = 5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 0 & 2 \\ 2 & 7 & 11 \end{vmatrix} = 5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 0 & 2 \\ 2 & 7 & 11 \end{vmatrix} = -5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{vmatrix} = -5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{vmatrix} = -\frac{1}{2} = -$$

Theorem 3(c) indicates	* $-2k$ $*$	* 5k *	* 4k *	= k	* -2 *	* 5 *	* 4 *	.	
EXAMPLE: Compute	2 4 5 6 7 6	6 5 7 5 10							

Solution

$$\begin{vmatrix} 2 & 4 & 6 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 \\ 0 & -4 & -8 \\ 0 & -8 & -11 \end{vmatrix}$$
$$= 2(-4) \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -8 & -11 \end{vmatrix} = 2(-4) \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 5 \end{vmatrix}$$
$$= 2(-4)(1)(1)(5) = -40$$

EXAMPLE: Compute
$$\begin{bmatrix}
 2 & 3 & 0 & 1 \\
 4 & 7 & 0 & 3 \\
 7 & 9 & -2 & 4 \\
 1 & 2 & 0 & 4
 \end{bmatrix}$$
 using a combination of

row reduction and cofactor expansion.

Solutior

$$\begin{array}{l} \text{ion} \quad \begin{vmatrix} 2 & 3 & 0 & 1 \\ 4 & 7 & 0 & 3 \\ 7 & 9 & -2 & 4 \\ 1 & 2 & 0 & 4 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 & 1 \\ 4 & 7 & 3 \\ 1 & 2 & 4 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 4 \end{vmatrix}$$
$$= -2 \begin{vmatrix} 2 & 3 & 1 \\ 1 & 2 & 4 \\ 0 & 1 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & 4 \\ 2 & 3 & 1 \\ 0 & 1 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & 4 \\ 0 & -1 & -7 \\ 0 & 1 & 1 \end{vmatrix}$$
$$= -2 \begin{vmatrix} 1 & 2 & 4 \\ 0 & -1 & -7 \\ 0 & 0 & -6 \end{vmatrix} = -2(1)(-1)(-6) = -12.$$

THEOREM 4 A square matrix is invertible if and only if $det A \neq 0$.

THEOREM 5 If A is an $n \times n$ matrix, then det $A^T = det A$.

Partial proof
$$(2 \times 2 \text{ case})$$

 $det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$ and
 $det \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{T} = det \begin{bmatrix} a & c \\ b & d \end{bmatrix} = ad - bc$
 $\Rightarrow det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = det \begin{bmatrix} a & c \\ b & d \end{bmatrix}.$

$$(3 \times 3 \text{ case})$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$\det \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} = a \begin{vmatrix} e & h \\ f & i \end{vmatrix} - b \begin{vmatrix} d & g \\ f & i \end{vmatrix} + c \begin{vmatrix} d & g \\ e & h \end{vmatrix}$$

$$\Rightarrow \det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \det \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}.$$

Implications of Theorem 5?

Theorem 3 still holds if the word row is replaced

with ______.

THEOREM 6 (Multiplicative Property)

For $n \times n$ matrices A and B, det(AB) = (detA)(detB).

EXAMPLE: Compute $det A^3$ if det A = 5.

Solution: $det A^3 = det(AAA) = (det A)(det A)(det A)$

= ______ = _____.

EXAMPLE: For $n \times n$ matrices *A* and *B*, show that *A* is singular if det $B \neq 0$ and det AB = 0.

Solution: Since $(\det A)(\det B) = \det AB = 0$

and

 $\det B \neq 0,$

then det A = 0. Therefore A is singular.