Obstructions to deforming space curves and non-reduced components of the Hilbert scheme

Hirokazu Nasu

Tokai University

March 5, 2013, @HIOA
§1 Introduction

§2 Infinitesimal analysis of the Hilbert scheme
§3 Application to Kleppe’s conjecture
§4 Obstruction to deforming curves on a quartic surface

§1.1 Conventions and Notation
§1.2 Mumford’s example

§1 Introduction

Obstructions to deforming space curves and ...
Hilbert scheme

\(V\): a projective variety over \(k = \bar{k}\). \(\text{char } k = 0\)

\(H\): an ample divisor on \(V\).

Notation

<table>
<thead>
<tr>
<th>(\text{Hilb} \ V)</th>
<th>= the (full) Hilbert scheme of (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bigcup \text{ open}) (\text{Hilb}^{\text{sc}} \ V) :</td>
<td>= {smooth connected curves (C \subset V}}</td>
</tr>
<tr>
<td>(\text{closed } \bigcup \text{ open}) (\text{Hilb}_{d,g}^{\text{sc}} \ V) :</td>
<td>= {curves of degree degree (d) and genus (g}}</td>
</tr>
</tbody>
</table>

\((d := (C \cdot H)_V)\)
Hilbert scheme of space curves

\[V = \mathbb{P}^3: \text{the projective 3-space over } k \]
\[C \subset \mathbb{P}^3: \text{a closed subscheme of } \text{dim} = 1 \]
\[d(C): \text{degree of } C \,(= \#(C \cap H)) \]
\[g(C): \text{genus of } C \, (\text{as a cpt. Riemann surf.}) \]

We study the Hilbert scheme of space curves:

\[H^{S}_{d,g} := \text{Hilb}^{sc}_{d,g} \mathbb{P}^3 \]
\[= \left\{ C \subset \mathbb{P}^3 \mid \text{smooth and connected} \right\} \]
\[\quad d(C) = d \text{ and } g(C) = g \]
Why we study $H^S_{d,g}$?

Some reasons are:

- For every smooth curve C, there exists a curve $C' \subset \mathbb{P}^3$ s.t. $C' \simeq C$.
- \[\text{Hilb}^{sc} \mathbb{P}^3 = \bigsqcup_{d,g} H^S_{d,g} \]
- More recently, the classification of the space curves has been applied to the study of bir. automorphism $\Phi : \mathbb{P}^3 \rightarrow \mathbb{P}^3$.

(for the construction of Sarkisov links [Blanc-Lamy, 2012]).
Some basic facts

- If \(g \leq d - 3 \), then \(H^S_{d,g} \) is irreducible \[\text{[Ein,'86]}\] and \(H^S_{d,g} \) is generically smooth of expected dimension \(4d \).

- In general, \(H^S_{d,g} \) can become reducible, e.g.
 \[H^S_{9,10} = W_{1}^{(36)} \sqcup W_{2}^{(36)} \] \[\text{[Noether]}\].

- the Hilbert scheme of arith. Cohen-Macaulay (ACM, for short) curves are smooth \[\text{[Ellingsrud, '75]}\].

\[C \subset \mathbb{P}^3: \text{ACM} \iff H^1(\mathbb{P}^3, I_C(l)) = 0 \text{ for all } l \in \mathbb{Z} \]

- \(H^S_{d,g} \) can have many generically non-reduced irreducible components, e.g. \[\text{[Mumford’62]}, \text{[Kleppe’87]}, \text{[Ellia’87]}, \text{[Gruson-Peskine’82]}, \text{etc.}\]
Infinitesimal property of the Hilbert scheme

\(V \): a projective variety over \(k \)
\(C \subset V \): a subvariety of \(V \)
\(I_C \): the ideal sheaf defining \(C \) in \(V \)
\(N_{C/V} \): the normal sheaf of \(C \) in \(V \)

Fact (Tangent space and Obstruction group)

1. The **tangent space** of \(\text{Hilb} \ V \) at \([C]\) is isomorphic to \(\text{Hom}(I_C, O_C) \cong H^0(C, N_{C/V}) \)
2. Every **obstruction** \(\text{ob} \) to deforming \(C \) in \(V \) is contained in the group \(\text{Ext}^1(I_C, O_C) \). If \(C \) is a locally complete intersection in \(V \), then \(\text{ob} \) is contained in \(H^1(C, N_{C/V}) \)
$W \subset \text{Hilb } V$: an irreducible closed subset of $\text{Hilb } V$.

$[C] \in W$: a closed point of W

$C_\eta \in W$: the generic point of W

Definition

- We say C is unobstructed (resp. obstructed) (in V) if $\text{Hilb } V$ is nonsingular (resp. singular) at $[C]$.

- We say $\text{Hilb } V$ is generically smooth (resp. generically non-reduced) along W if $\text{Hilb } V$ is nonsingular (resp. singular) at C_η.
Mumford’s example (a pathology)

\[\text{S} \subseteq \mathbb{P}^3: \text{a smooth cubic surface } (\cong \text{Blow}_{6 \text{ pts}} \mathbb{P}^2) \]

\[h = S \cap \mathbb{P}^2: \text{a hyperplane section} \]

\[E: \text{a line on S} \]

There exists a smooth connected curve

\[C \in |4h + 2E| \subset S \subset \mathbb{P}^3, \]

of degree 14 and genus 24.

Then \(C \) is parametrized by a locally closed subset

\[W = W^{(56)} \subset H_{14,24}^S \subset \text{Hilb}^{sc} \mathbb{P}^3 \]

of the Hilbert scheme.
The locally closed subset $W^{(56)}$ fits into the diagram

$$\left\{ C \subset \mathbb{P}^3 \left| C \subset \Sigma \text{ (smooth cubic)} \right. \quad \text{and} \quad C \sim 4h + 2E \right\} \longrightarrow =: \ W^{(56)} \subset H^S_{14,24}$$

$$\downarrow \mathbb{P}^{39}\text{-bundle}$$

$$\left(\begin{array}{c} \text{family of smooth} \\ \text{cubic surfaces} \end{array} \right) =: \ U \subset \text{open } |O_{\mathbb{P}^3}(3)| \simeq \mathbb{P}^{19},$$

where we have $\dim |O_S(C)| = 39$ and $h^0(N_{C/\mathbb{P}^3}) = 57.$
\[H^0(N_{C/P^3}) = \text{the tangent space of } \text{Hilb}^{sc} P^3 \text{ at } [C]. \]
We have the following inequalities:

\[56 = \dim W \leq \dim_{[C]} \text{Hilb}^{sc} P^3 \leq h^0(N_{C/P^3}) = 57. \]

Thus we have a dichotomy between (A) and (B):

- **A** \(W \) is an irreducible component of \((\text{Hilb}^{sc} P^3)_{\text{red}} \).
- **B** \(\text{Hilb}^{sc} P^3 \) is generically non-reduced along \(W \).

- There exists an irreducible component \(W' \supsetneq W \).
- \(\text{Hilb}^{sc} P^3 \) is generically smooth along \(W \).

Which? \(\leadsto \) The answer is (A). (It suffices to prove \(\text{Hilb}^{sc} P^3 \) is singular at the generic point \([C]\) of \(W \). We will see later in §2)
Later many non-reduced components of $\text{Hilb}^{sc} \mathbb{P}^3$ were found by Kleppe[’85], Ellia[’87], Gruson-Peskine[’82], Fløystad[’93] and Nasu[’05]. Moreover, to the question “How bad can the deformation space of an object be?”, Vakil[’06] has answered that

Law (Murphy’s law in algebraic geometry)

Unless there is some a priori reason otherwise, the deformation space may be as bad as possible.
A naive question

Nowadays non-reduced components of Hilbert schemes are not seldom. However,

Question

What is/are the most important reason(s) (if any) for their existence?

Our answer is the following: (at least in Mumford’s example,) a \((-1)\)-curve \(E\) (i.e. \(E \simeq \mathbb{P}^1, E^2 = -1\)) on the (cubic) surface is the most important.
A generalization of Mumford’s ex.

Theorem (Mukai-Nasu’09)

\(V \): a smooth projective 3-fold. Suppose that

1. there exists a curve \(E \cong \mathbb{P}^1 \subset V \)
 s.t. \(N_{E/V} \) is generated by global sections,
2. there exists a smooth surface \(S \) s.t. \(E \subset S \subset V \),
 \((E^2)_S = -1 \) and \(H^1(N_{S/V}) = p_g(S) = 0 \).

Then the Hilbert scheme \(\text{Hilb}^{sc} V \) has infinitely many generically non-reduced components.

In Mumford’s ex., \(V = \mathbb{P}^3 \), \(S \): a smooth cubic, \(E \): a line.
Examples

We have many ex. of generically non-reduced components of $\text{Hilb}^{sc} V$ for uniruled 3-folds V.

Ex.

1. Let V be a Fano 3-fold and let $-K_V = H + H'$, where H, H': ample. $\exists S \in |H|$ (smooth).

 If $S \neq \mathbb{P}^2$ nor $\mathbb{P}^1 \times \mathbb{P}^1$, then there exists a $(-1)-\mathbb{P}^1 E$ on S.

2. Let $V \to F$ be a \mathbb{P}^1-bundle over a smooth surface F with $p_g(F) = 0$. Let S_1 be a section of π and A a sufficiently ample divisor on F. Then there exists a smooth surface $S \in |S_1 + \pi^* A|$. Take a fiber E of $S \to F$.

Hirokazu Nasu Obstructions to deforming space curves and ...
§2 Infinitesimal analysis of the Hilbert scheme
In the analysis of Mumford’s ex., we develop some techniques to computing the obstruction to deforming a curve on a uniruled 3-fold (“obstructedness criterion”).

Setting:
- V: a uniruled 3-fold
- S: a surface
- E: (-1)-\mathbb{P}^1 on S
- C: a curve on S with $C \subset S \subset V$

Obst. Criterion

Non-reduced components of $\text{Hilb}^{sc} V$
Obstructions and Cup products

\(\tilde{C} \subset V \times \text{Spec } k[t]/(t^2) \): a first order (infinitesimal) deformation of \(C \) in \(V \) (i.e., a tangent vector of \(\text{Hilb } V \) at \([C]\))

\[
\tilde{C} \in \{1\text{st ord. def. of } C\}
\]

\[
\Uparrow\quad \Uparrow \quad \exists 1\text{-to-1}
\]

\[
\alpha \in \text{Hom}(\mathcal{I}_C, \mathcal{O}_C) \quad (\simeq H^0(N_{C/V}))
\]

Define the cup product \(\text{ob}(\alpha) \) by

\[
\text{ob}(\alpha) := \alpha \cup e \cup \alpha \in \text{Ext}^1(\mathcal{I}_C, \mathcal{O}_C),
\]

where \(e \in \text{Ext}^1(\mathcal{O}_C, \mathcal{I}_C) \) is the ext. class of an exact sequence \(0 \to \mathcal{I}_C \to \mathcal{O}_V \to \mathcal{O}_C \to 0 \).
Fact

A first order deformation \tilde{C} lifts to a deformation over $\text{Spec } k[t]/(t^3)$ if and only if $\text{ob}(\alpha) = 0$.

Remark

- If $\text{ob}(\alpha) \neq 0$, then $\text{Hilb } V$ is singular at $[C]$.
- If C is a loc. complete intersection in V, then $\text{ob}(\alpha)$ is contained in the small group $H^1(C, N_{C/V})$ ($\subset \text{Ext}^1(I_C, O_C)$).
Let $C \subset S \subset V$ be a flag of a curve, a surface and a 3-fold (all smooth), and let $\pi_{C/S} : N_{C/V} \to N_{S/V}\big|_C$ be the natural projection.

Definition

Define the *exterior component of* α and $\text{ob}(\alpha)$ by

\[
\pi_S(\alpha) := H^0(\pi_{C/S})(\alpha), \\
\text{ob}_S(\alpha) := H^1(\pi_{C/S})(\text{ob}(\alpha)),
\]

respectively.
Let $E \subset S \subset V$ be a flag of a curve, a surface and a 3-fold.

Definition

A rational section ν of $N_{S/V}$ admitting a pole along E, i.e.

$$\nu \in H^0(N_{S/V}(E)) \setminus H^0(N_{S/V}),$$

is called an **infinitesimal deformation with a pole**.

Remark (an interpretation)

Every inf. def. with a pole induces a 1st ord. def. of the open surface $S^\circ = S \setminus E$ in $V^\circ = V \setminus E$ by the map

$$H^0(N_{S/V}(E)) \rightarrow H^0(N_{S^\circ/V^\circ})$$
Now we are ready to give a sufficient condition for a first order infinitesimal deformation of \(\tilde{C} \) (\(\subset V \times \text{Spec } k[t]/(t^2) \)) of \(C \) in \(V \) to a second order deformation \(\tilde{\tilde{C}} \) (\(\subset V \times \text{Spec } k[t]/(t^3) \)).
We consider $\alpha \in H^0(N_{C/V})$ satisfying the following condition (☆): the ext. comp. $\pi_S(\alpha)$ of α lifts to an inf. def. with a pole along E, say ν, and its restriction $\nu|_E$ to E does not belong to the image of the map $\pi_{E/S}(E) := \pi_{E/S} \otimes O_S(E)$.

\[
\begin{array}{ccc}
H^0(N_{C/V}) & \ni \alpha & H^0(N_{E/V(E)}) \\
\downarrow \pi_{C/S} & & \downarrow \pi_{E/S(E)} \\
H^0(N_{S/V}|_C) & \ni \pi_S(\alpha) & H^0(N_{S/V}(E)|_C) \\
\cap & \ni \nu \mapsto \nu|_E & \ni \nu\left|_E \in H^0(N_{S/V}(E)|_E) \right.
\end{array}
\]
Theorem (Mukai-Nasu’09)

Let \(C, E \subset S \subset V \) be as above. Suppose that \(E^2 < 0 \) on \(S \), and let \(\alpha \in H^0(N_{C/V}) \) satisfy (\(\star \)). If moreover,

1. Let \(\Delta := C + K_V|_S - 2E \) on \(S \). Then
 \[
 (\Delta \cdot E)_S = 2(-E^2 + g(E) - 1)
 \] (2.1)

2. the res. map \(H^0(S, \Delta) \to H^0(E, \Delta|_E) \) is surjective, then we have \(\text{ob}_S(\alpha) \neq 0 \).

Remark

If \(E \) is a \((-1)-\mathbb{P}^1\) on \(S \), then the RHS of (2.1) is equal to 0.
How to apply Obstructedness Criterion

(Mumford’s ex. $V = \mathbb{P}^3$)

Every general member $C \subset \mathbb{P}^3$ of Mumford’s ex. $W^{(56)} \subset \text{Hilb}^{sc} \mathbb{P}^3$ is contained in a smooth cubic surface S and $C \sim 4h + 2E$ on S (E: a line, h: a hyp. sect.).

Let t_W denote the tangent space of W at $[C]$ ($\dim t_W = \dim W = 56$).

Then there exists a first order deformation $\tilde{C} \leftrightarrow \alpha \in H^0(C, N_{C/\mathbb{P}^3}) \setminus t_W$.

of C in \mathbb{P}^3.

Claim

$\text{ob}(\alpha) \neq 0$.
Proof.

Since $H^1(N_{S/\mathbb{P}^3}(E - C)) = 0$, the ext. comp. $\pi_{C/S}(\alpha) \in H^0(N_{S/\mathbb{P}^3}|_C)$ of α has a lifts to a rational section $\nu \in H^0(N_{S/\mathbb{P}^3}(E))$ on S (an inf. def. with a pole). By the key lemma below, the restriction $\nu|_E$ to E is not contained in $\text{im} \pi_{E/S}(E)$. Since $C \sim 4h + 2E = -K_{\mathbb{P}^3}|_S + 2E$, the divisor Δ is zero. Thus the condition (1) and (2) are both satisfied. \qed

Lemma (Key Lemma)

Since C is general, the finite scheme $Z := C \cap E$ of length 2 is not cut out by any conic in $|h - E| \simeq \mathbb{P}^1$ on S.
§3 Application to Kleppe’s conjecture
Minimal degree $s(W)$ for $W \subset H_{d,g}^S$

\[\text{Hilb}^{sc} \mathbb{P}^3: \text{the Hilb. sch. of sm. con. curves } C \subset \mathbb{P}^3 \]
\[H_{d,g}^S \subset \text{Hilb}^{sc} \mathbb{P}^3: \text{the subsch. of curves of deg. } d \text{ and gen. } g \]
\[W \subset H_{d,g}^S: \text{an irreducible closed subset} \]
\[C \in W: \text{a general member of } W \]

**Definition (minimal degree of } W) \]

\[s(W) := \min \left\{ s \in \mathbb{N} \mid H^0(\mathbb{P}^3, \mathcal{I}_C(s)) \neq 0 \right\} \]
\[= \text{the minimal degree of a surface } S \supset C \]
s-maximal subsets of $H^S_{d,g}$

Definition (Kleppe’87)

$W \subset H^S_{d,g}$ is called $s(W)$-maximal if it is maximal w.r.t $s(W)$.

W: s-maximal $\implies s(V) > s$ for any closed irreducible subset $V \subsetneq W$.

Ex. (Mumford’s ex.)

\[W = \left\{ C \subset \mathbb{P}^3 \mid C \subset 3S \text{ (sm. cubic)} \text{ and } C \sim 4h + 2E \right\}^\sim \]

is a 3-maximal subset of $H^S_{14,24}$.
First properties of s-maximal subsets

In what follows, we assume that

1. $W \subset H^S_{d,g}$: a s-maximal subset
2. a general member $C \subset S$, where S: a smooth surface of deg s.

Proposition

Suppose that $s \leq 4$ and $d > s^2$. Then

1. If C is not a c.i. when $s = 4$, then
 \[\dim W = (4 - s)d + g + \binom{s+3}{s} - 2 \]
2. If $H^1(\mathbb{P}^3, I_C(s)) = 0$ and if C is not a c.i. when $s = 4$, then W is a generically smooth component of $H^S_{d,g}$.
Let $s = 3$. If $d > 3^2 = 9$, then $\dim W = d + g + 18$.

Fact

Every irreducible component of $H_{d,g}^S$ is of dimension greater than or equal to $4d$ ($= \chi(N_C/\mathbb{P}^3)$).

Thus if W is a component, then

$$\dim W \geq 4d \iff g \geq 3d - 18.$$
Conjecture (Kleppe’87, a ver. modified by Ellia)

Let \(d > 9, g \geq 3d - 18 \), and let \(W \subset H^S_{d,g} \) be a 3-maximal subset. If a general member \(C \) of \(W \) satisfies

1. \(H^1(\mathbb{P}^3, \mathcal{I}_C(3)) \neq 0 \), and
2. \(H^1(\mathbb{P}^3, \mathcal{I}_C(1)) = 0 \)

then \(W \) is a **gen. non-reduced** irred. component of \(H^S_{d,g} \).
Remark

1. The linearly normality assumption \((H^1(I_C(1)) = 0)\) was missing in the original ver. of the conjecture. (pointed out by Ellia[’87] with a counterexample).

2. The tangential dimension \(h^0(N_{C/\mathbb{P}^3})\) of \(H^S_{d,g}\) at \([C]\) is greater than \(\text{dim } W\) by \(h^1(I_C(3))\).

3. The subset \(W\) can be described more explicitly in terms of the coordinate \((a; b_1, \ldots, b_6)\) of \(C\) in \(\text{Pic } S \cong \mathbb{Z}^7\)
In the following cases, Kleppe’s conjecture is known to be true.

1. \(g > 7 + \frac{(d - 2)^2}{8} \) and \(d \geq 18 \) [Kleppe’87]

2. \(d \geq 21 \) and \(g > G(d, 5) \) [Ellia’87]

3. \(h^1(\mathbb{P}^3, \mathcal{I}_{C}(3)) = 1 \) [Nasu’05]

\(^1\) \(G(d, 5) \) denotes the max. genus of curves of degree \(d \), not contained in any quartic surface. \(G(d, 5) \approx d^2/10 \) for \(d >> 0 \).

\(^2\) proved by computing cup products
Let \(d > 9 \) and \(g \geq 3d - 18 \) and let \(W \subset H^S_{d,g} \) and \(C \) as in Kleppe’s conjecture.

Lemma

The following conditions are equivalent:

1. \(C \) is **quadratically normal**, i.e., \(H^1(\mathbb{P}^3, \mathcal{I}_C(2)) = 0 \).
2. \((C \cdot E) \geq 2 \) for every line \(E \) on \(S \)
3. Let \(C \sim (a; b_1, \ldots, b_6) \) with some basis of \(\text{Pic} \, S \cong \mathbb{Z}^7 \). Then \(b_i \geq 2 \) for all \(i = 1, \ldots, 6 \).
4. Let \(h \in \text{Pic} \, S \) be the cls. of hyp. sections. The base locus of the complete lin. sys. \(|C - 3h|\) contains no double lines \(2E_i \), and no triple lines \(3E_i \).
Main Theorem

Theorem (—’09)

Kleppe’s conjecture is true if \(C \) is \textit{quadratically normal}, i.e.,

\[
H^1(\mathbb{P}^3, I_C(2)) = 0.
\]
How to prove Main Theorem

As we see in the Mumford’s ex., it suffices to prove that $\text{ob} (\alpha) \neq 0$ for every

$$\alpha \in H^0(C, N_{C/\mathbb{P}^3}) \setminus t_W,$$

where t_W is the tangent space of W at $[C]$. Note that the ext. comp. $\pi_S(\alpha)$ of α lifts to a rational section

$$v \in H^0(S, N_{S/\mathbb{P}^3}(F)) \setminus H^0(S, N_{S/\mathbb{P}^3}),$$

where F is the fixed component of the lin. sys. $|C - 3h|$. Then we apply the obstructedness criterion for a first order deformation $\tilde{C} \leftrightarrow \alpha$ of C in \mathbb{P}^3.
Another progress has been made:

Theorem (Kleppe’12)

Kleppe’s conjecture is true provided that:

1. $b_6 = 2$, $b_5 \geq 4$, $d \geq 21$ and
 $(a; b_1, \ldots, b_6) \neq (\lambda + 12, \lambda + 4, 4, \ldots, 4, 2), \forall \lambda \geq 2,$

2. $b_6 = 1$, $b_5 \geq 6$, $d \geq 35$ and
 $(a; b_1, \ldots, b_6) \neq (\lambda + 18, \lambda + 6, 6, \ldots, 6, 1), \forall \lambda \geq 2,$

3. $b_6 = 1$, $b_5 = 5$, $b_4 \geq 7$, $d \geq 35$ and
 $(a; b_1, \ldots, b_6) \neq (\lambda + 21, \lambda + 7, 7, \ldots, 7, 5, 1), \forall \lambda \geq 2.$
§4 Obstruction to deforming curves on a quartic surface
Quartic surfaces containing a line

Similarly, we can compute the obstructions to deforming curves on a smooth quartic surface.

Assume that:
- $S \subset \mathbb{P}^3$: a smooth quartic surface (a K3 surface),
- E: a line on S,
- $F (\sim h - E)$: a plane cubic curve cut out by a plane $H \supset E$,
- $\text{Pic } S \cong \mathbb{Z}E \oplus \mathbb{Z}F$, and the intersection matrix is given by

$$
\begin{pmatrix}
E^2 & E \cdot F \\
E \cdot F & F^2
\end{pmatrix} =
\begin{pmatrix}
-2 & 3 \\
3 & 0
\end{pmatrix}.
$$
Then every curve C on S is expressed in $\text{Pic} S$ by

$$C \sim aE + bF \quad (a, b \geq 0)$$

with $d = a + 3b$ and $g = 3ab - b^2 + 1$.

Let W be a 4-maximal subset containing $[C]$. If $d > 16$ and $a \neq b$, then

$$\dim W = g + 33.$$

Moreover, we see that....
Theorem (Kleppe’12 (with Ottem))

Suppose that \(d > 16 \) and \(4 < a < b \). Then

1. If \(3b - 2a \geq 3 \), then \(h^1(\mathcal{I}_C(4)) = 0 \). In particular, \(W \) is a generically smooth component of \(H^S_{d,g} \).

2. If \(3b - 2a \leq 2 \), then \(h^1(\mathcal{I}_C(4)) \neq 0 \). Moreover, \(W \) is a generically non-reduced component of \(H^S_{d,g} \).

In fact, we see that

\[
h^1(\mathbb{P}^3, \mathcal{I}_C(4)) = \begin{cases}
1 & (3b - 2a = 2) \\
2 & (3b - 2a = 1) \\
4 & (3b - 2a = 0)
\end{cases}
\]
By computing cup products, we have proved the following:

Theorem

Let C and W be as in the thm. If

$$3b - 2a = 2 \ (\Rightarrow h^1(\mathbb{P}^3, I_C(4)) = 1),$$

then there exists a first order deformation \tilde{C} of C in \mathbb{P}^3 which does not lift to a deformation over $\text{Spec } k[t]/(t^3)$.

However, for the other case (where $3b - 2a = 1, 0$) we have not yet proved the obstructedness of a general $C \in W$.
Quartic surfaces containing a conic

We have many variations of a smooth quartic surface S containing $E \cong \mathbb{P}^1$, e.g., the one containing conics E_1, E_2.

Assume that:

- $S \subset \mathbb{P}^3$: a smooth quartic surface (a K3 surface),
- E_1, E_2: conics on S such that $h \sim E_1 + E_2$,
- $\text{Pic } S \cong \mathbb{Z}E_1 \oplus \mathbb{Z}E_2$, and the intersection matrix is given by

$$
\begin{pmatrix}
E_1^2 & E_1 \cdot E_2 \\
E_1 \cdot E_2 & E_2^2
\end{pmatrix}
=
\begin{pmatrix}
-2 & 4 \\
4 & -2
\end{pmatrix}
$$

Hirokazu Nasu
Obstructions to deforming space curves and ...
Then every curve C on S is expressed in $\text{Pic} \ S$ by

$$C \sim aE + bF \quad (a, b \geq 0)$$

with $d = 2a + 2b$ and $g = 4ab - a^2 - b^2 + 1$. Let W be a 4-maximal subset containing $[C]$. If $d > 16$ and $a \neq b$, then

$$\dim W = g + 33.$$

Moreover, we see that....
Theorem (Kleppe’12 (with Ottem))

Suppose that \(d > 16 \) and \(a \neq b > 4 \). If

\[
\frac{b + 4}{2} \leq a \leq 2b - 4,
\]

then \(h^1(\mathbb{P}^3, I_C(4)) = 0 \). In particular, \(W \) is a generically smooth component of \(H^S_{d,g} \).

Otherwise, we see that

\[
h^1(\mathbb{P}^3, I_C(4)) = \begin{cases}
1 & (2b - a = 3) \\
4 & (2b - a = 2) \\
9 & (2b - a = 1) \\
16 & (2b - a = 0)
\end{cases}
\]
By computing cup products, we have proved the following:

Theorem

Let C be a general member of W, and suppose that

$$2b - a = 3 \quad \Rightarrow \quad h^1(\mathbb{P}^3, \mathcal{I}_C(4)) = 1.$$

Then there exists a first order deformation \tilde{C} of C in \mathbb{P}^3 which does not lift to a deformation over $\text{Spec } k[t]/(t^3)$.

However, for the other case (where $2b - a = 2, 1, 0$) we have not yet proved the obstructedness of a general $C \in W$.
Reference

S. Mukai and H. Nasu,
Obstructions to deforming curves on a 3-fold I: A generalization of Mumford’s example and an application to Hom schemes.

J. Algebraic Geom., **18**(2009), 691-709

H. Nasu,
Obstructions to deforming curves on a 3-fold, II: Deformations of degenerate curves on a del Pezzo 3-fold,

Annales de L’Institut Fourier, **60**(2010), no.4, 1289-1316.