# Obstructions to deforming space curves and non-reduced components of the Hilbert scheme 

Hirokazu Nasu

Tokai University

March 5, 2013, @HIOA

## §1 Introduction

## Hilbert scheme

$\boldsymbol{V}$ : a projective variety over $\boldsymbol{k}=\overline{\boldsymbol{k}}$. char $\boldsymbol{k}=\mathbf{0}$
$\boldsymbol{H}$ : an ample divisor on $\boldsymbol{V}$.
Notation
Hilb $\boldsymbol{V} \quad=$ the (full) Hilbert scheme of $\boldsymbol{V}$
U open
Hilb $^{s c} \boldsymbol{V}$ : $=\{$ smooth connected curves $\boldsymbol{C} \subset \boldsymbol{V}\}$
closed $\bigcup$ open
Hilb $_{d, g}^{s c} \boldsymbol{V}$ : = \{curves of degree degree $d$ and genus $g$ \}
$\left(d:=(C \cdot H)_{V}\right)$

## Hilbert scheme of space curves

$\boldsymbol{V}=\mathbb{P}^{\mathbf{3}}$ : the projective 3-space over $\boldsymbol{k}$
$C \subset \mathbb{P}^{\mathbf{3}}:$ a closed subscheme of $\operatorname{dim}=\mathbf{1}$
$\boldsymbol{d}(\boldsymbol{C})$ : degree of $\boldsymbol{C}(=\sharp(\boldsymbol{C} \cap \boldsymbol{H}))$
$\boldsymbol{g}(\boldsymbol{C})$ : genus of $\boldsymbol{C}$ (as a cpt. Riemann surf.)
We study the Hilbert scheme of space curves:

$$
\begin{aligned}
\boldsymbol{H}_{d, g}^{S} & :=\text { Hill }_{d, g}^{s c} \mathbb{P}^{3} \\
& =\left\{C \subset \mathbb{P}^{3} \left\lvert\, \begin{array}{l}
\text { smooth and connected } \\
d(C)=d \text { and } g(C)=g
\end{array}\right.\right\}
\end{aligned}
$$

## Why we study $H_{d, g}^{S}$ ?

Some reasons are:

- For every smooth curve $\boldsymbol{C}$, there exists a curve $\boldsymbol{C}^{\prime} \subset \mathbb{P}^{3}$ s.t. $\boldsymbol{C}^{\prime} \simeq \boldsymbol{C}$.
- Hilb $^{s c} \mathbb{P}^{3}=\bigsqcup_{d, g} \boldsymbol{H}_{d, g}^{S}$
- More recently, the classification of the space curves has been applied to the study of bir. automorphism

$$
\Phi: \mathbb{P}^{3} \ldots \mathbb{P}^{3}
$$

(for the construction of Sarkisov links
[Blanc-Lamy,2012]).

## Some basic facts

- If $\boldsymbol{g} \leq \boldsymbol{d}-\mathbf{3}$, then $\boldsymbol{H}_{d, g}^{S}$ is irreducible [Ein,86] and $\boldsymbol{H}_{d, g}^{S}$ is generically smooth of expected dimension $4 d$.
- In general, $\boldsymbol{H}_{d, g}^{S}$ can become reducible, e.g $\boldsymbol{H}_{9,10}^{S}=W_{1}^{(36)} \sqcup W_{2}^{(36)}$ [Noether].
- the Hilbert scheme of arith. Cohen-Macaulay (ACM, for short) curves are smooth [Ellingsrud, '75].

$$
\boldsymbol{C} \subset \mathbb{P}^{3}: \text { ACM } \stackrel{\text { def }}{\Longleftrightarrow} \boldsymbol{H}^{1}\left(\mathbb{P}^{3}, I_{C}(l)\right)=0 \text { for all } l \in \mathbb{Z}
$$

- $\boldsymbol{H}_{d, g}^{S}$ can have many generically non-reduced irreducible components, e.g. [Mumford'62], [Kleppe'87], [Ellia'87], [Gruson-Peskine'82], etc.


## Infinitesimal property of the Hilbert scheme

$\boldsymbol{V}$ : a projective variety over $\boldsymbol{k}$
$C \subset V$ : a subvariety of $V$
$\mathcal{I}_{C}$ : the ideal sheaf defining $C$ in $V$
$N_{C / V}$ : the normal sheaf of $C$ in $V$
Fact (Tangent space and Obstruction group)
(C) The tangent space of Hilb $\boldsymbol{V}$ at $[\boldsymbol{C}]$ is isomorphic to $\operatorname{Hom}\left(I_{C}, O_{C}\right) \simeq H^{0}\left(C, N_{C / V}\right)$
(2) Every obstruction ob to deforming $\boldsymbol{C}$ in $\boldsymbol{V}$ is contained in the group $\operatorname{Ext}^{1}\left(I_{C}, O_{C}\right)$. If $\boldsymbol{C}$ is a locally complete intersection in $\boldsymbol{V}$, then ob is contained in $\boldsymbol{H}^{1}\left(\boldsymbol{C}, \boldsymbol{N}_{C / V}\right)$
$W \subset$ Hilb $V$ : an irreducible closed subset of Hilb $V$.
$[C] \in W$ : a closed point of $W$
$\boldsymbol{C}_{\boldsymbol{\eta}} \in \boldsymbol{W}$ : the generic point of $\boldsymbol{W}$

## Definition

- We say $\boldsymbol{C}$ is unobstructed (resp. obstructed) (in $\boldsymbol{V}$ ) if Hilb $\boldsymbol{V}$ is nonsingular (resp. singular) at [C].
- We say Hilb $\boldsymbol{V}$ is generically smooth (resp. generically non-reduced) along $\boldsymbol{W}$ if Hilb $\boldsymbol{V}$ is nonsingular (resp. singular) at $\boldsymbol{C}_{\boldsymbol{\eta}}$.


## Mumford's example (a pathology)

$S \subset \mathbb{P}^{\mathbf{3}}:$ a smooth cubic surface $\left(\simeq\right.$ Blow $\left._{6 \text { pts }} \mathbb{P}^{2}\right)$
$h=S \cap \mathbb{P}^{2}:$ a hyperplane section
$\boldsymbol{E}$ : a line on $S$
There exists a smooth connected curve

$$
C \in|4 h+2 E| \subset S \subset \mathbb{P}^{3}
$$

of degree 14 and genus 24 .
Then $\boldsymbol{C}$ is parametrized by a locally closed subset

$$
W=W^{(56)} \subset H_{14,24}^{S} \subset \operatorname{Hilb}^{s c} \mathbb{P}^{3}
$$

of the Hilbert scheme.

The locally closed subset $\boldsymbol{W}^{(56)}$ fits into the diagram

$$
\left\{C \subset \mathbb{P}^{3} \left\lvert\, \begin{array}{c}
C \subset{ }^{\bullet} S \text { (smooth cubic) } \\
\text { and } C \sim 4 h+2 E
\end{array}\right.\right\}^{-}=: \quad W^{(56)} \subset H_{14,24}^{S}
$$

$$
\downarrow \mathbb{P}^{39} \text {-bundle }
$$

$$
\binom{\text { family of smooth }}{\text { cubic surfaces }}=: \quad U \quad \underset{\text { open }}{\subset}\left|O_{\mathbb{P}^{3}}(\mathbf{3})\right| \simeq \mathbb{P}^{19},
$$

where we have $\operatorname{dim}\left|O_{S}(C)\right|=39$ and $\boldsymbol{h}^{0}\left(N_{C / \mathbb{P}^{3}}\right)=57$.
$\boldsymbol{H}^{0}\left(\boldsymbol{N}_{C / \mathbb{P}^{3}}\right)=$ the tangent space of Hilb $^{s c} \mathbb{P}^{3}$ at $[\boldsymbol{C}]$.
We have the following inequalities:

$$
56=\operatorname{dim} W \leq \operatorname{dim}_{[C]} \operatorname{Hilb}^{s c} \mathbb{P}^{3} \leq h^{0}\left(N_{C / \mathbb{P}^{3}}\right)=57 .
$$

Thus we have a dichotomy between $(A)$ and $(B)$ :
(A) $\bar{W}$ is an irred. comp. of $\left(\text { Hilb }^{\text {sc }} \mathbb{P}^{3}\right)_{\text {red }}$ Hilb ${ }^{s c} \mathbb{P}^{3}$ is generically non-reduced along $\bar{W}$.
(B) There exists an irred. comp. $\boldsymbol{W}^{\prime} \supsetneq \boldsymbol{W}$.

Hilb $^{s c} \mathbb{P}^{3}$ is generically smooth along $\bar{W}$.
Which? $\leadsto$ The answer is $(\mathrm{A})$. (It suffices to prove Hilb ${ }^{s c} \mathbb{P}^{3}$ is singular at the generic point $[\boldsymbol{C}]$ of $\boldsymbol{W}$. We will see later in §2)

## History

Later many non-reduced components of Hilb ${ }^{s c} \mathbb{P}^{3}$ were found by Kleppe['85], Ellia['87], Gruson-Peskine['82], Fløystad['93] and Nasu['05].
Moreover, to the question "How bad can the deformation space of an object be?", Vakil['06] has answered that

Law (Murphy's law in algebraic geometry)
Unless there is some a priori reason otherwise, the deformation space may be as bad as possible.

## A naive question

## Nowadays non-reduced components of Hilbert schemes are not seldom. However,

## Question

What is/are the most important reason(s) (if any) for their existence?

Our answer is the following: (at least in Mumford's example,) a ( -1 )-curve $\boldsymbol{E}$ (i.e. $\boldsymbol{E} \simeq \mathbb{P}^{1}, \boldsymbol{E}^{2}=-1$ ) on the (cubic) surface is the most important.

## A generalization of Mumford's ex.

## Theorem (Mukai-Nasu'09)

$V$ : a smooth projective 3-fold. Suppose that
(1) there exists a curve $E \simeq \mathbb{P}^{1} \subset V$
s.t. $N_{E / V}$ is generated by global sections,
(2) there exists a smooth surface $S$ s.t. $E \subset S \subset V$,

$$
\left(E^{2}\right)_{S}=-1 \text { and } H^{1}\left(N_{S / V}\right)=p_{g}(S)=0 .
$$

Then the Hilbert scheme Hilb ${ }^{s c} \boldsymbol{V}$ has infinitely many generically non-reduced components.

In Mumford's ex., $\boldsymbol{V}=\mathbb{P}^{3}, \boldsymbol{S}$ : a smooth cubic, $\boldsymbol{E}$ : a line.

## Examples

We have many ex. of generically non-reduced components of $\boldsymbol{H i l b}^{\text {sc }} \boldsymbol{V}$ for uniruled 3-folds $\boldsymbol{V}$.

## Ex.

(1) Let $\boldsymbol{V}$ be a Fano $\mathbf{3}$-fold and let $-\boldsymbol{K}_{\boldsymbol{V}}=\boldsymbol{H}+\boldsymbol{H}^{\prime}$, where $\boldsymbol{H}, \boldsymbol{H}^{\prime}$ : ample. ${ }^{\boldsymbol{\exists}} \boldsymbol{S} \in|\boldsymbol{H}|$ (smooth). If $S \neq \mathbb{P}^{2}$ nor $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then there exists a $(\mathbf{- 1})-\mathbb{P}^{\mathbf{1}} \boldsymbol{E}$ on $\boldsymbol{S}$.
(2) Let $\boldsymbol{V} \xrightarrow{\pi} \boldsymbol{F}$ be a $\mathbb{P}^{1}$-bundle over a smooth surface $\boldsymbol{F}$ with $\boldsymbol{p}_{g}(\boldsymbol{F})=\mathbf{0}$. Let $\boldsymbol{S}_{1}$ be a section of $\boldsymbol{\pi}$ and $\boldsymbol{A}$ a sufficiently ample divisor on $\boldsymbol{F}$. Then there exists a smooth surface $\boldsymbol{S} \in\left|\boldsymbol{S}_{1}+\pi^{*} \boldsymbol{A}\right|$. Take a fiber $\boldsymbol{E}$ of $\boldsymbol{S} \boldsymbol{\rightarrow} \boldsymbol{F}$.

## §2 Infinitesimal analysis of the Hilbert scheme

In the analysis of Mumford's ex., we develop some techniques to computing the obstruction to deforming a curve on a uniruled 3 -fold ("obstructedness criterion").

```
Setting:
V: a uniruled 3-fold
S: a surface
E: (-1)-\mathbb{P}
C: a curve on S
with }C\subsetS\subset
```

Obst. Criterion
$\Longrightarrow$

> Non-reduced components of Hilb $^{s c}$ V

## Obstructions and Cup products

$\tilde{C} \subset V \times \operatorname{Spec} k[t] /\left(t^{2}\right):$
a first order (infinitesimal) deformation of $\boldsymbol{C}$ in $\boldsymbol{V}$ (i.e., a tangent vector of Hilb $\boldsymbol{V}$ at [C])

| $\tilde{C}$ | $\in$ | $\{1$ st ord. def. of $\boldsymbol{C}\}$ |  |
| :--- | :--- | :---: | :---: |
| $\mathfrak{I}$ |  | $\mathfrak{I}^{\exists_{1-\text { to- }}}$ |  |
| $\alpha$ | $\in$ | $\operatorname{Hom}\left(\mathcal{I}_{C}, O_{C}\right)$ | $\left(\simeq \boldsymbol{H}^{0}\left(\boldsymbol{N}_{C / V}\right)\right)$ |

Define the cup product $\mathbf{o b}(\alpha)$ by

$$
\mathbf{o b}(\alpha):=\alpha \cup \mathrm{e} \cup \alpha \in \operatorname{Ext}^{1}\left(\mathcal{I}_{C}, O_{C}\right)
$$

where $\mathbf{e} \in \operatorname{Ext}^{1}\left(O_{C}, \mathcal{I}_{C}\right)$ is the ext. class of an exact sequence $\mathbf{0} \rightarrow I_{C} \rightarrow O_{V} \rightarrow O_{C} \rightarrow \mathbf{0}$.

## Fact

A first order deformation $\tilde{\boldsymbol{C}}$ lifts to a deformation over Spec $k[t] /\left(t^{3}\right)$ if and only if $\mathbf{o b}(\alpha)=\mathbf{0}$.

## Remark

- If $\mathbf{o b}(\alpha) \neq \mathbf{0}$, then Hilb $\boldsymbol{V}$ is singular at $[C]$.
- If $\boldsymbol{C}$ is a loc. complete intersection in $\boldsymbol{V}$, then $\mathbf{o b}(\boldsymbol{\alpha})$ is contained in the small group $\boldsymbol{H}^{1}\left(\boldsymbol{C}, \boldsymbol{N}_{\boldsymbol{C} / V}\right)$ ( $\subset \operatorname{Ext}^{1}\left(I_{C}, O_{C}\right)$ ).


## Exterior components

Let $\boldsymbol{C} \subset \boldsymbol{S} \subset \boldsymbol{V}$ be a flag of a curve, a surface and a 3-fold (all smooth), and let $\pi_{C / S}:\left.N_{C / V} \rightarrow N_{S / V}\right|_{C}$ be the natural projection.

## Definition

Define the exterior component of $\alpha$ and $\mathbf{o b}(\alpha)$ by

$$
\begin{aligned}
& \pi_{S}(\alpha):= \\
& \mathbf{o b}_{S}(\alpha):= \\
& H^{0}\left(\pi_{C / S}\right)\left(\pi_{C / S}\right)(\mathbf{o b}(\alpha)),
\end{aligned}
$$

respectively.

## Infinitesimal deformation with pole

Let $\boldsymbol{E} \subset S \subset \boldsymbol{V}$ be a flag of a curve, a surface and a $\mathbf{3}$-fold.
Definition
A rational section $v$ of $N_{S / V}$ admitting a pole along $E$, i.e.

$$
v \in H^{0}\left(N_{S / V}(E)\right) \backslash H^{0}\left(N_{S / V}\right),
$$

is called an infinitesimal deformation with a pole.
Remark (an interpretation)
Every inf. def. with a pole induces a 1st ord. def. of the open surface $\boldsymbol{S}^{\circ}=\boldsymbol{S} \backslash \boldsymbol{E}$ in $\boldsymbol{V}^{\circ}=\boldsymbol{V} \backslash \boldsymbol{E}$ by the map

$$
H^{0}\left(N_{S / V}(E)\right) \hookrightarrow H^{0}\left(N_{S^{\circ} / V^{\circ}}\right)
$$

## Obstructedness Criterion

Now we are ready to give a sufficient condition for a first order infinitesimal deformation of $\tilde{\boldsymbol{C}}\left(\subset V \times \operatorname{Spec} k[t] /\left(t^{2}\right)\right.$ ) of $\boldsymbol{C}$ in $\boldsymbol{V}$ to a second order deformation $\tilde{\tilde{\boldsymbol{C}}}$ (c $V \times \operatorname{Spec} k[t] /\left(t^{3}\right)$ ).

## Condition ( $\underset{\sim}{*}$ )

We consider $\alpha \in H^{0}\left(N_{C / V}\right)$ satisfying the following condition ( $\}$ ): the ext. comp. $\pi_{S}(\alpha)$ of $\alpha$ lifts to an inf. def. with a pole along $E$, say $v$, and its restriction $\left.v\right|_{E}$ to $E$ does not belong to the image of the map $\pi_{E / S}(E):=\pi_{E / S} \otimes O_{S}(E)$.

$$
\begin{aligned}
& \begin{array}{cr}
\boldsymbol{H}^{0}\left(N_{C / V}\right) & \ni \alpha \\
\|_{C / S} & \downarrow
\end{array} \\
& \left.\boldsymbol{H}^{0}\left(\left.\boldsymbol{N}_{S / V}\right|_{C}\right) \quad \underset{\left(=\left.v\right|_{C}\right)}{\ni \pi_{S}(\alpha)} \stackrel{\text { res. }}{\longleftrightarrow} v \stackrel{\text { res. }}{\longmapsto}\right|_{E} \in H^{0}\left(\left.\boldsymbol{N}_{S / V}(E)\right|_{E}\right) \\
& \cap \\
& \boldsymbol{H}^{0}\left(\left.\boldsymbol{N}_{S / V}(E)\right|_{C}\right) \stackrel{\text { res. }}{\leftarrow} \quad \boldsymbol{H}^{0}\left(\boldsymbol{N}_{S / V}(E)\right)
\end{aligned}
$$

## Theorem (Mukai-Nasu'09)

Let $\boldsymbol{C}, \boldsymbol{E} \subset \boldsymbol{S} \subset \boldsymbol{V}$ be as above. Suppose that $\boldsymbol{E}^{2}<\mathbf{0}$ on $\boldsymbol{S}$, and let $\alpha \in H^{0}\left(N_{C / V}\right)$ satisfy ( $\left.\underset{\sim}{ }\right)$. If moreover,
(1) Let $\Delta:=C+\left.K_{V}\right|_{S}-2 E$ on $S$. Then

$$
\begin{equation*}
(\Delta \cdot E)_{S}=2\left(-E^{2}+g(E)-1\right) \tag{2.1}
\end{equation*}
$$

(2) the res. map $\boldsymbol{H}^{0}(S, \Delta) \rightarrow \boldsymbol{H}^{0}\left(E,\left.\Delta\right|_{E}\right)$ is surjective, then we have $\mathbf{o b}_{S}(\boldsymbol{\alpha}) \neq \mathbf{0}$.

## Remark

If $\boldsymbol{E}$ is a $(-1)-\mathbb{P}^{1}$ on $\boldsymbol{S}$, then the RHS of (2.1) is equal to $\mathbf{0}$.

## How to apply Obstructedness Criterion

(Mumford's ex. $\boldsymbol{V}=\mathbb{P}^{3}$ )
Every general member $\boldsymbol{C} \subset \mathbb{P}^{3}$ of Mumford's ex.
$W^{(56)} \subset$ Hilb ${ }^{\text {sc }} \mathbb{P}^{3}$ is contained in a smooth cubic surface $S$ and $C \sim 4 \boldsymbol{h}+2 E$ on $S$ ( $E$ : a line, $\boldsymbol{h}$ : a hyp. sect.).
Let $\boldsymbol{t}_{\boldsymbol{W}}$ denote the tangent space of $\boldsymbol{W}$ at $[\boldsymbol{C}]$
$\left(\operatorname{dim} t_{W}=\operatorname{dim} W=56\right)$.
Then there exists a first order deformation

$$
\tilde{C} \longleftrightarrow \alpha \in H^{0}\left(C, N_{C / \mathbb{P}^{3}}\right) \backslash t_{W} .
$$

of $\boldsymbol{C}$ in $\mathbb{P}^{3}$.

## Claim

$\mathbf{o b}(\alpha) \neq 0$.

## Proof.

Since $\boldsymbol{H}^{\mathbf{1}}\left(\boldsymbol{N}_{\boldsymbol{S} / \mathbb{P}^{3}}(\boldsymbol{E}-\boldsymbol{C})\right)=\mathbf{0}$, the ext. comp.
$\pi_{C / S}(\alpha) \in H^{0}\left(\left.N_{S / \mathbb{P}^{3}}\right|_{C}\right)$ of $\alpha$ has a lifts to a rational section $\boldsymbol{v} \in \boldsymbol{H}^{0}\left(\boldsymbol{N}_{\boldsymbol{S} / \mathbb{P}^{3}}(\boldsymbol{E})\right.$ ) on $\boldsymbol{S}$ (an inf. def. with a pole). By the key lemma below, the restriction $\left.v\right|_{E}$ to $E$ is not contained $\operatorname{im} \pi_{E / S}(E)$. Since $C \sim 4 \boldsymbol{h}+\mathbf{2 E}=-\left.K_{\mathbb{P}^{3}}\right|_{S}+\mathbf{2 E}$, the divisor $\Delta$ is zero. Thus the condition (1) and (2) are both satisfied.

## Lemma (Key Lemma)

Since $\boldsymbol{C}$ is general, the finite scheme $\boldsymbol{Z}:=\boldsymbol{C} \cap \boldsymbol{E}$ of length $\mathbf{2}$ is not cut out by any conic in $|\boldsymbol{h}-\boldsymbol{E}| \simeq \mathbb{P}^{1}$ on $\boldsymbol{S}$.

## §3 Application to Kleppe's conjecture

## Minimal degree $s(W)$ for $W \subset H_{d, g}^{S}$

Hilb ${ }^{\text {sc }} \mathbb{P}^{3}$ : the Hilb. sch. of sm. con. curves $C \subset \mathbb{P}^{3}$
$\boldsymbol{H}_{d, g}^{S} \subset$ Hilb $^{s c} \mathbb{P}^{3}$ : the subsch. of curves of deg. $\boldsymbol{d}$ and gen. $\boldsymbol{g}$
$\boldsymbol{W} \subset \boldsymbol{H}_{d, g}^{S}$ : an irreducible closed subset
$\boldsymbol{C} \in \boldsymbol{W}$ : a general member of $\boldsymbol{W}$
Definition (minimal degree of $W$ )

$$
\begin{aligned}
s(W) & :=\min \left\{s \in \mathbb{N} \mid H^{0}\left(\mathbb{P}^{3}, I_{C}(s)\right) \neq 0\right\} \\
& =\text { the minimal degree of a surface } S \supset C
\end{aligned}
$$

## s-maximal subsets of $\boldsymbol{H}^{S}$ <br> $$
d, g
$$

## Definition (Kleppe'87)

$W \subset \boldsymbol{H}_{d, g}^{S}$ is called $s(W)$-maximal if it is maximal w.r.t $s(W)$.
$W$ : $s$-maximal $\Longrightarrow s(V)>s$ for any closed irreducible subset $\boldsymbol{V} \supsetneq \boldsymbol{W}$.

Ex. (Mumford's ex.)

$$
W=\left\{C \subset \mathbb{P}^{3} \mid C \subset{ }^{\exists} S \text { (sm. cubic) and } C \sim 4 h+2 E\right\}^{-}
$$

is a 3-maximal subset of $\boldsymbol{H}^{\boldsymbol{S}}$

$$
14,24^{\circ}
$$

## First properties of $s$-maximal subsets

In what follows, we assume that
(1) $W \subset \boldsymbol{H}_{d, g}^{S}$ : a $s$-maximal subset
(2) a general member $\boldsymbol{C} \subset S$, where $S$ : a smooth surface of deg $s$.

## Proposition

Suppose that $\boldsymbol{s} \leq \mathbf{4}$ and $\boldsymbol{d}>\boldsymbol{s}^{2}$. Then
(0) If $C$ is not a c.i. when $s=4$, then
$\operatorname{dim} W=(4-s) d+g+\binom{s+3}{s}-2$
(2) If $\boldsymbol{H}^{1}\left(\mathbb{P}^{3}, I_{C}(s)\right)=\mathbf{0}$ and if $\boldsymbol{C}$ is not a c.i. when $\boldsymbol{s}=\mathbf{4}$, then $\boldsymbol{W}$ is a generically smooth component of $\boldsymbol{H}_{d, g}^{S}$.

## 3-maximal subsets of $\boldsymbol{H}^{S}$ <br> $$
d, g
$$

Let $s=3$. If $d>3^{2}=9$, then $\operatorname{dim} W=d+g+\mathbf{1 8}$.

## Fact

Every irreducible component of $\boldsymbol{H}_{d, g}^{S}$ is of dimension greater than or equal to $4 d\left(=\chi\left(N_{C / \mathbb{P}^{3}}\right)\right)$

Thus if $W$ is a component, then

$$
\operatorname{dim} W \geq 4 d \Longleftrightarrow g \geq 3 d-18 .
$$

## Conjecture

## Conjecture (Kleppe'87, a ver. modified by Ellia)

Let $\boldsymbol{d}>\mathbf{9}, \boldsymbol{g} \geq \mathbf{3 d} \mathbf{- 1 8}$, and let $\boldsymbol{W} \subset \boldsymbol{H}_{\boldsymbol{d}, \boldsymbol{g}}^{S}$ be a 3-maximal subset. If a general member $C$ of $W$ satisfies
(1) $H^{1}\left(\mathbb{P}^{3}, I_{C}(3)\right) \neq 0$, and
(2) $H^{1}\left(\mathbb{P}^{3}, I_{C}(\mathbf{1})\right)=0$
then $\boldsymbol{W}$ is a gen. non-reduced irred. component of $\boldsymbol{H}_{d, g}^{S}$.

## Remark

(1) The linearly normality assumption $\left(\boldsymbol{H}^{\mathbf{1}}\left(\boldsymbol{I}_{C}(\mathbf{1})\right)=\mathbf{0}\right)$ was missing in the original ver. of the conjecture. (pointed out by Ellia['87] with a counterexample).
(2) The tangential dimension $\boldsymbol{h}^{0}\left(\boldsymbol{N}_{\boldsymbol{C} / \mathbb{P}^{3}}\right)$ of $\boldsymbol{H}_{d, g}^{S}$ at $[\boldsymbol{C}]$ is greater than $\operatorname{dim} W$ by $\boldsymbol{h}^{1}\left(I_{C}(\mathbf{3})\right)$.
(0) The subset $\boldsymbol{W}$ can be described more explicitly in terms of the coordinate ( $\boldsymbol{a} ; \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{\mathbf{6}}$ ) of $\boldsymbol{C}$ in $\operatorname{Pic} \boldsymbol{S} \simeq \mathbb{Z}^{7}$

## Known results

In the following cases, Kleppe's conjecture is known to be true.
(1) $g>7+\frac{(\boldsymbol{d}-\mathbf{2})^{2}}{\mathbf{8}}$ and $\boldsymbol{d} \geq \mathbf{1 8}$ [Kleppe'87]
(3) $\boldsymbol{d} \geq \mathbf{2 1}$ and $\boldsymbol{g}>\boldsymbol{G}(\boldsymbol{d}, \mathbf{5})\left[\right.$ Ellia'87] $^{1}$
(3) $\boldsymbol{h}^{1}\left(\mathbb{P}^{3}, I_{C}(\mathbf{3})\right)=\mathbf{1}\left[\right.$ Nasu'05] $^{2}$
${ }^{1} \boldsymbol{G}(\boldsymbol{d}, \mathbf{5})$ denotes the max. genus of curves of degree $\boldsymbol{d}$, not contained in any quartic surface. $\boldsymbol{G}(\boldsymbol{d}, \mathbf{5}) \approx \boldsymbol{d}^{2} / \mathbf{1 0}$ for $\boldsymbol{d} \gg \mathbf{0}$.
${ }^{2}$ proved by computing cup products

Let $\boldsymbol{d}>\mathbf{9}$ and $g \geq \mathbf{3 d} \mathbf{- 1 8}$ and let $\boldsymbol{W} \subset \boldsymbol{H}_{\boldsymbol{d}, \boldsymbol{g}}^{S}$ and $\boldsymbol{C}$ as in
Kleppe's conjecture.

## Lemma

The following conditions are equivalent:
(1) $\boldsymbol{C}$ is quadratically normal, i.e., $\boldsymbol{H}^{1}\left(\mathbb{P}^{3}, I_{C}(\mathbf{2})\right)=\mathbf{0}$.
(2) $(\boldsymbol{C} \cdot \boldsymbol{E}) \geq \mathbf{2}$ for every line $\boldsymbol{E}$ on $\boldsymbol{S}$
(3) Let $\boldsymbol{C} \sim\left(a ; \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{6}\right)$ with some basis of $\operatorname{Pic} \boldsymbol{S} \simeq \mathbb{Z}^{7}$.

Then $\boldsymbol{b}_{i} \geq \mathbf{2}$ for all $\boldsymbol{i}=\mathbf{1}, \cdots, \mathbf{6}$.
(9) Let $\boldsymbol{h} \in \operatorname{Pic} \boldsymbol{S}$ be the cls. of hyp. sections. The base locus of the complete lin. sys. $|C-\mathbf{3} h|$ contains no double lines $\mathbf{2} \boldsymbol{E}_{i}$, and no triple lines $\mathbf{3} \boldsymbol{E}_{i}$.

## Main Theorem

## Theorem (-'09)

Kleppe's conjecture is true if $\boldsymbol{C}$ is quadratically normal, i.e.,

$$
\boldsymbol{H}^{1}\left(\mathbb{P}^{3}, I_{C}(\mathbf{2})\right)=0 .
$$

## How to prove Main Theorem

As we see in the Mumford's ex., it suffices to prove that $\mathbf{o b}(\alpha) \neq \mathbf{0}$ for every

$$
\alpha \in H^{0}\left(C, N_{C / \mathbb{P}^{3}}\right) \backslash t_{W},
$$

where $\boldsymbol{t}_{\boldsymbol{W}}$ is the tangnet space of $\boldsymbol{W}$ at $[\boldsymbol{C}]$.
Note that the ext. comp. $\boldsymbol{\pi}_{S}(\alpha)$ of $\alpha$ lifts to a rational section

$$
v \in H^{0}\left(S, N_{S / \mathbb{P}^{3}}(F)\right) \backslash H^{0}\left(S, N_{S / \mathbb{P}^{3}}\right),
$$

where $\boldsymbol{F}$ is the fixed component of the lin. sys. $\mid \boldsymbol{C} \boldsymbol{- 3 \boldsymbol { h } |}$. Then we apply the obstructedness criterion for a first order deformation $\tilde{\boldsymbol{C}}(\longleftrightarrow \alpha)$ of $\boldsymbol{C}$ in $\mathbb{P}^{3}$.

## A more recent result

Another progress has been made:

## Theorem (Kleppe'12)

Kleppe's conjecture is true provided that;
(1) $b_{6}=2, b_{5} \geq 4, d \geq 21$ and
$\left(a ; b_{1}, \ldots, b_{6}\right) \neq(\lambda+12, \lambda+4,4, \ldots, 4,2),{ }^{\vee} \lambda \geq 2$,
(2) $b_{6}=1, b_{5} \geq 6, d \geq 35$ and

$$
\left(a ; b_{1}, \ldots, b_{6}\right) \neq(\lambda+18, \lambda+6,6, \ldots, 6,1),{ }^{\vee} \lambda \geq 2,
$$

(3) $b_{6}=1, b_{5}=5, b_{4} \geq 7, d \geq 35$ and

$$
\left(a ; b_{1}, \ldots, b_{6}\right) \neq(\lambda+21, \lambda+7,7, \ldots, 7,5,1),{ }^{\vee} \lambda \geq 2 .
$$

## §4 Obstruction to deforming curves on a quartic surface

## Quartic surfaces containing a line

Similarly, we can compute the obstructions to deforming curves on a smooth quartic surface.

Assume that:
$S \subset \mathbb{P}^{3}:$ a smooth quartic surface (a K3 surface),
$\boldsymbol{E}$ : a line on $\boldsymbol{S}$,
$\boldsymbol{F}(\sim \boldsymbol{h}-\boldsymbol{E})$ : a plane cubic curve cut out by a plane $\boldsymbol{H} \supset \boldsymbol{E}$,
$\operatorname{Pic} \boldsymbol{S} \simeq \mathbb{Z} \boldsymbol{E} \oplus \mathbb{Z} \boldsymbol{F}$, and the intersection matrix is given by

$$
\left(\begin{array}{cc}
E^{2} & E \cdot F \\
E \cdot F & F^{2}
\end{array}\right)=\left(\begin{array}{cc}
-2 & 3 \\
3 & 0
\end{array}\right) .
$$

## Then every curve $\boldsymbol{C}$ on $\boldsymbol{S}$ is expressed in Pic $S$ by

$$
C \sim a E+b F \quad(a, b \geq 0)
$$

with $d=a+3 b$ and $g=3 a b-b^{2}+1$.
Let $\boldsymbol{W}$ be a 4-maximal subset containing [ $C$ ]. If $\boldsymbol{d}>\mathbf{1 6}$ and $a \neq b$, then

$$
\operatorname{dim} W=g+33
$$

Moreover, we see that....

## Theorem (Kleppe'12 (with Ottem))

Suppose that $\boldsymbol{d}>\mathbf{1 6}$ and $\mathbf{4}<\boldsymbol{a}<\boldsymbol{b}$. Then
(1) If $\mathbf{3 b}-\mathbf{2 a} \geq \mathbf{3}$, then $\boldsymbol{h}^{\mathbf{1}}\left(\boldsymbol{I}_{\boldsymbol{C}}(\mathbf{4})\right)=\mathbf{0}$. In particular, $\boldsymbol{W}$ is a generically smooth component of $\boldsymbol{H}_{d, g}^{S}$.
(2) If $\mathbf{3 b}-\mathbf{2 a} \leq 2$, then $\boldsymbol{h}^{\mathbf{1}}\left(\mathcal{I}_{C}(\mathbf{4})\right) \neq 0$. Moreover, $W$ is a generically non-reduced component of $\boldsymbol{H}_{d, g}^{S}$.

In fact, we see that

$$
h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{C}(4)\right)= \begin{cases}1 & (3 b-2 a=2) \\ 2 & (3 b-2 a=1) \\ 4 & (3 b-2 a=0)\end{cases}
$$

By computing cup products, we have proved the following:

## Theorem

Let $\boldsymbol{C}$ and $\boldsymbol{W}$ be as in the thm. If

$$
3 b-2 a=2 \quad\left(\Rightarrow h^{1}\left(\mathbb{P}^{3}, I_{C}(4)\right)=1\right)
$$

then there exists a first order deformation $\tilde{\boldsymbol{C}}$ of $\boldsymbol{C}$ in $\mathbb{P}^{\mathbf{3}}$ which does not lift to a deformation over Spec $k[t] /\left(t^{3}\right)$.

However, for the other case (where $\mathbf{3 b - 2 a = 1 , 0}$ ) we have not yet proved the obstructedness of a general $\boldsymbol{C} \in \boldsymbol{W}$.

## Quartic surfaces containing a conic

We have many variations of a smooth quartic surface $S$ containing $E \simeq \mathbb{P}^{1}$, e.g., the one containing conics $\boldsymbol{E}_{1}, \boldsymbol{E}_{2}$.

Assume that:
$S \subset \mathbb{P}^{3}$ : a smooth quartic surface (a K3 surface),
$\boldsymbol{E}_{1}, \boldsymbol{E}_{2}$ : conics on $S$ such that $\boldsymbol{h} \sim \boldsymbol{E}_{1}+\boldsymbol{E}_{2}$,
$\operatorname{Pic} S \simeq \mathbb{Z} \boldsymbol{E}_{1} \oplus \mathbb{Z} \boldsymbol{E}_{\mathbf{2}}$, and the intersection matrix is given by

$$
\left(\begin{array}{cc}
E_{1}^{2} & E_{1} \cdot E_{2} \\
E_{1} \cdot E_{2} & E_{2}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-2 & 4 \\
4 & -2
\end{array}\right)
$$

## Then every curve $\boldsymbol{C}$ on $\boldsymbol{S}$ is expressed in Pic $S$ by

$$
C \sim a E+b F \quad(a, b \geq 0)
$$

with $d=2 a+2 b$ and $g=4 a b-a^{2}-b^{2}+1$.
Let $\boldsymbol{W}$ be a 4-maximal subset containing [C]. If $\boldsymbol{d}>\mathbf{1 6}$ and $a \neq \boldsymbol{b}$, then

$$
\operatorname{dim} W=g+33
$$

Moreover, we see that....

## Theorem (Kleppe'12 (with Ottem))

Suppose that $\boldsymbol{d}>\mathbf{1 6}$ and $\boldsymbol{a} \neq \boldsymbol{b}>4$. If

$$
\frac{b+4}{2} \leq a \leq 2 b-4,
$$

then $\boldsymbol{h}^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{\boldsymbol{C}}(\mathbf{4})\right)=\mathbf{0}$. In particular, $\boldsymbol{W}$ is a generically smooth component of $\boldsymbol{H}_{d, g}^{S}$.

Otherwise, we see that

$$
h^{1}\left(\mathbb{R}^{3}, I_{C}(4)\right)= \begin{cases}1 & (2 b-a=3) \\ 4 & (2 b-a=2) \\ 9 & (2 b-a=1) \\ 16 & (2 b-a=0)\end{cases}
$$

By computing cup products, we have proved the following:

## Theorem

Let $\boldsymbol{C}$ be a general member of $\boldsymbol{W}$, and suppose that

$$
2 b-a=3 \quad\left(\Rightarrow h^{1}\left(\mathbb{P}^{3}, I_{C}(4)\right)=1\right) .
$$

Then there exists a first order deformation $\tilde{\boldsymbol{C}}$ of $\boldsymbol{C}$ in $\mathbb{P}^{3}$ which does not lift to a deformation over Spec $k[t] /\left(t^{3}\right)$.

However, for the other case (where $\mathbf{2 b}-\boldsymbol{a}=\mathbf{2 , 1 , 0}$ ) we have not yet proved the obstructedness of a general $\boldsymbol{C} \in \boldsymbol{W}$.

## Reference

S. Mukai and H. Nasu,

Obstructions to deforming curves on a 3-fold I: A generalization of Mumford's example and an application to Hom schemes.
J. Algebraic Geom., 18(2009), 691-709
H. Nasu,

Obstructions to deforming curves on a 3-fold, II: Deformations of degenerate curves on a del Pezzo 3-fold, Annales de L'Institut Fourier, 60(2010), no.4, 1289-1316.

